These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 35628588)
1. Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. Nunez Lopez YO; Iliuk A; Petrilli AM; Glass C; Casu A; Pratley RE Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628588 [TBL] [Abstract][Full Text] [Related]
2. The proteome and phosphoproteome of circulating extracellular vesicle-enriched preparations are associated with characteristic clinical features in type 1 diabetes. Casu A; Nunez Lopez YO; Yu G; Clifford C; Bilal A; Petrilli AM; Cornnell H; Carnero EA; Bhatheja A; Corbin KD; Iliuk A; Maahs DM; Pratley RE Front Endocrinol (Lausanne); 2023; 14():1219293. PubMed ID: 37576973 [TBL] [Abstract][Full Text] [Related]
3. Extracellular vesicle proteomics and phosphoproteomics identify pathways for increased risk in patients hospitalized with COVID-19 and type 2 diabetes mellitus. Nunez Lopez YO; Iliuk A; Casu A; Parikh A; Smith JS; Corbin K; Lupu D; Pratley RE Diabetes Res Clin Pract; 2023 Mar; 197():110565. PubMed ID: 36736734 [TBL] [Abstract][Full Text] [Related]
4. Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles. Wu X; Iliuk AB; Tao WA Adv Clin Chem; 2023; 112():119-153. PubMed ID: 36642482 [TBL] [Abstract][Full Text] [Related]
5. Phosphoproteomics of extracellular vesicles integrated with multiomics analysis reveals novel kinase networks for lung cancer. Qiao Z; Kong Y; Zhang Y; Qian L; Wang Z; Guan X; Lu H; Xiao H Mol Carcinog; 2022 Dec; 61(12):1116-1127. PubMed ID: 36148632 [TBL] [Abstract][Full Text] [Related]
6. Chemical Affinity-Based Isolation of Extracellular Vesicles from Biofluids for Proteomics and Phosphoproteomics Analysis. Liu YK; Luo Z; Iliuk A; Tao WA J Vis Exp; 2023 Oct; (200):. PubMed ID: 37955372 [TBL] [Abstract][Full Text] [Related]
7. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions. Chen X; Song X; Li J; Wang J; Yan Y; Yang F Cell Commun Signal; 2024 May; 22(1):273. PubMed ID: 38755675 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Chen IH; Xue L; Hsu CC; Paez JS; Pan L; Andaluz H; Wendt MK; Iliuk AB; Zhu JK; Tao WA Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3175-3180. PubMed ID: 28270605 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation. Segura-Benítez M; Carbajo-García MC; Corachán A; Faus A; Pellicer A; Ferrero H Reprod Biol Endocrinol; 2022 Jan; 20(1):3. PubMed ID: 34980157 [TBL] [Abstract][Full Text] [Related]
10. Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. Guha D; Lorenz DR; Misra V; Chettimada S; Morgello S; Gabuzda D J Neuroinflammation; 2019 Dec; 16(1):254. PubMed ID: 31805958 [TBL] [Abstract][Full Text] [Related]
11. Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification. Iliuk A; Wu X; Li L; Sun J; Hadisurya M; Boris RS; Tao WA J Proteome Res; 2020 Jul; 19(7):2563-2574. PubMed ID: 32396726 [TBL] [Abstract][Full Text] [Related]
12. Proteomic and phosphoproteomic profiling of urinary small extracellular vesicles in hepatocellular carcinoma. Li D; Gao Y; Wang C; Hu L Analyst; 2024 Aug; 149(17):4378-4387. PubMed ID: 38995156 [TBL] [Abstract][Full Text] [Related]
13. Profiling Phosphoproteome Landscape in Circulating Extracellular Vesicles from Microliters of Biofluids through Functionally Tunable Paramagnetic Separation. Sun J; Li Q; Ding Y; Wei D; Hadisurya M; Luo Z; Gu Z; Chen B; Tao WA Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202305668. PubMed ID: 37216424 [TBL] [Abstract][Full Text] [Related]
14. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation. Zhang H; Cai YH; Ding Y; Zhang G; Liu Y; Sun J; Yang Y; Zhan Z; Iliuk A; Gu Z; Gu Y; Tao WA Cells; 2022 Jun; 11(13):. PubMed ID: 35805153 [TBL] [Abstract][Full Text] [Related]
15. Purification and Phosphoproteomic Analysis of Plasma-Derived Extracellular Vesicles. Iliuk AB Methods Mol Biol; 2022; 2504():147-156. PubMed ID: 35467285 [TBL] [Abstract][Full Text] [Related]
16. Reassessment of the Proteomic Composition and Function of Extracellular Vesicles in the Seminal Plasma. Wang H; Zhu Y; Tang C; Zhou Z; Wang Z; Li Z; Zheng X; Chen S; Zhou Y; Liang A; Li Y; Lin Y; Sun F Endocrinology; 2022 Jan; 163(1):. PubMed ID: 34647995 [TBL] [Abstract][Full Text] [Related]
17. Extracellular vesicles-incorporated microRNA signature as biomarker and diagnosis of prediabetes state and its complications. Alexandru N; Procopciuc A; Vîlcu A; Comariţa IK; Bӑdilӑ E; Georgescu A Rev Endocr Metab Disord; 2022 Jun; 23(3):309-332. PubMed ID: 34143360 [TBL] [Abstract][Full Text] [Related]
19. Proteomic and phosphoproteomic landscape of salivary extracellular vesicles to assess OSCC therapeutical outcomes. Sun J; Wang X; Ding Y; Xiao B; Wang X; Ali MM; Ma L; Xie Z; Gu Z; Chen G; Tao WA Proteomics; 2023 Mar; 23(5):e2200319. PubMed ID: 36573687 [TBL] [Abstract][Full Text] [Related]
20. Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles. Wu X; Li L; Iliuk A; Tao WA J Proteome Res; 2018 Sep; 17(9):3308-3316. PubMed ID: 30080416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]