BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 35628723)

  • 21. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 22. [The application of CRISPR/Cas9 genome editing technology in cancer research].
    Wang DY; Ma N; Hui Y; Gao X
    Yi Chuan; 2016 Jan; 38(1):1-8. PubMed ID: 26787518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in the development of Aspergillus for protein production.
    Li Q; Lu J; Zhang G; Liu S; Zhou J; Du G; Chen J
    Bioresour Technol; 2022 Mar; 348():126768. PubMed ID: 35091037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes.
    Dong H; Zheng J; Yu D; Wang B; Pan L
    J Microbiol Methods; 2019 Aug; 163():105655. PubMed ID: 31226337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli.
    Hashemi A
    World J Microbiol Biotechnol; 2020 Jun; 36(7):96. PubMed ID: 32583135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 27. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool.
    Shojaei Baghini S; Gardanova ZR; Abadi SAH; Zaman BA; İlhan A; Shomali N; Adili A; Moghaddar R; Yaseri AF
    Cell Mol Biol Lett; 2022 May; 27(1):35. PubMed ID: 35508982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A CRISPR/Cas9-based visual toolkit enabling multiplex integration at specific genomic loci in
    Li Y; Li C; Fu Y; Zhang Q; Ma J; Zhou J; Li J; Du G; Liu S
    Synth Syst Biotechnol; 2024 Jun; 9(2):209-216. PubMed ID: 38385153
    [No Abstract]   [Full Text] [Related]  

  • 32. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9.
    Kuivanen J; Wang YJ; Richard P
    Microb Cell Fact; 2016 Dec; 15(1):210. PubMed ID: 27955649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Thermostable CRISPR/Cas9 genome editing system and its application in construction of cell factories with thermophilic bacteria: a review].
    LE Y; He X; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1475-1489. PubMed ID: 35470620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 37. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cpf1 enables fast and efficient genome editing in Aspergilli.
    Vanegas KG; Jarczynska ZD; Strucko T; Mortensen UH
    Fungal Biol Biotechnol; 2019; 6():6. PubMed ID: 31061713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome modification by CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    FEBS J; 2014 Dec; 281(23):5186-93. PubMed ID: 25315507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.