BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35628733)

  • 1. The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in
    Li J; Shao Y; Yang Y; Xu C; Jing Z; Li H; Xie B; Tao Y
    J Fungi (Basel); 2022 May; 8(5):. PubMed ID: 35628733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted metabolome and transcriptome analyses reveal changes in gibberellin and related cell wall-acting enzyme-encoding genes during stipe elongation in
    Li H; Yao S; Xia W; Ma X; Shi L; Ju H; Li Z; Zhong Y; Xie B; Tao Y
    Front Microbiol; 2023; 14():1195709. PubMed ID: 37799602
    [No Abstract]   [Full Text] [Related]  

  • 3. Reactive Oxygen Species Distribution Involved in Stipe Gradient Elongation in the Mushroom
    Yan J; Chekanova J; Liu Y; Gan B; Long Y; Han X; Tong Z; Miao J; Lian L; Xie B; Liu F
    Cells; 2022 Jun; 11(12):. PubMed ID: 35741023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of β-1,6-Glucan Synthase Gene (
    Liu Y; Ma X; Long Y; Yao S; Wei C; Han X; Gan B; Yan J; Xie B
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome Profiling Reveals Candidate Genes Related to Stipe Gradient Elongation of
    Yan J; Tong Z; Han X; Gan Y; Liu Y; Chen J; Duan X; Lin J; Gan B; Xie B
    J Fungi (Basel); 2022 Dec; 9(1):. PubMed ID: 36675885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and expression analysis of a new glycoside hydrolase family 55 exo-β-1,3-glucanase-encoding gene in Volvariella volvacea suggests a role in fruiting body development.
    Tao Y; Xie B; Yang Z; Chen Z; Chen B; Deng Y; Jiang Y; van Peer AF
    Gene; 2013 Sep; 527(1):154-60. PubMed ID: 23751305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa.
    Fang H; Zhang W; Niu X; Liu Z; Lu C; Wei H; Yuan S
    Fungal Biol; 2014 Jan; 118(1):1-11. PubMed ID: 24433673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom
    Zhou J; Kang L; Liu C; Niu X; Wang X; Liu H; Zhang W; Liu Z; Latgé JP; Yuan S
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Expression Patterns of
    Huang Q; Han X; Mukhtar I; Gao L; Huang R; Fu L; Yan J; Tao Y; Chen B; Xie B
    J Microbiol Biotechnol; 2018 Apr; 28(4):622-629. PubMed ID: 29618178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tissue Browning and Concomitant Toughening of Yellow
    Deng B; Zhang B; Xi L; Chang M; Meng J; Feng C; Liu J; Xu J
    J Agric Food Chem; 2023 Nov; 71(44):16593-16603. PubMed ID: 37890451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological Characterization and Antagonist Screening of Cladosporium anthropophilum, a Novel Pathogen Causing Stipe Black Rot on Commercial Medicinal Mushroom, Flammulina filiformis (Agaricomycetes).
    Wang Q; Qiu K; Guo M; Bian Y; Xiao Y
    Int J Med Mushrooms; 2021; 23(12):65-73. PubMed ID: 35381155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucanase-Induced Stipe Wall Extension Shows Distinct Differences from Chitinase-Induced Stipe Wall Extension of Coprinopsis cinerea.
    Kang L; Zhou J; Wang R; Zhang X; Liu C; Liu Z; Yuan S
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of β-glucan-degrading enzymes from Coprinopsis cinerea for their capacities to induce stipe cell wall extension.
    Kang L; Zhang X; Liu X; Wang R; Liu C; Zhou J; Liu Z; Yuan S
    Int J Biol Macromol; 2020 Jun; 152():516-524. PubMed ID: 32112847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and Expression Analysis of Vvlcc3, a Novel and Functional Laccase Gene Possibly Involved in Stipe Elongation.
    Lu Y; Wu G; Lian L; Guo L; Wang W; Yang Z; Miao J; Chen B; Xie B
    Int J Mol Sci; 2015 Dec; 16(12):28498-509. PubMed ID: 26633374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor FfMYB15 regulates the expression of cellulase gene FfCEL6B during mycelial growth of Flammulina filiformis.
    Liu Z; Deng B; Yuan H; Zhang B; Liu J; Meng J; Chang M
    Microb Cell Fact; 2022 Oct; 21(1):216. PubMed ID: 36253826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated transcriptome and metabolome analysis provides insights into blue light response of Flammulina filiformis.
    Wang H; Zhao S; Han Z; Qi Z; Han L; Li Y
    AMB Express; 2024 Feb; 14(1):21. PubMed ID: 38351413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis.
    Tao Y; Chen R; Yan J; Long Y; Tong Z; Song H; Xie B
    Gene; 2019 Jul; 706():84-90. PubMed ID: 31028867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of
    Lyu X; Wang Q; Liu A; Liu F; Meng L; Wang P; Zhang Y; Wang L; Li Z; Wang W
    Front Microbiol; 2023; 14():1139679. PubMed ID: 37213522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elongation growth and gravitropic curvature in the Flammulina velutipes (Agaricales) fruiting body.
    Haindl E; Monzer J
    Exp Mycol; 1994 Jun; 18(2):150-8. PubMed ID: 11541305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis.
    Liu XB; Xia EH; Li M; Cui YY; Wang PM; Zhang JX; Xie BG; Xu JP; Yan JJ; Li J; Nagy LG; Yang ZL
    PLoS One; 2020; 15(10):e0239890. PubMed ID: 33064719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.