These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35629084)

  • 1. Guiding Efficient, Effective, and Patient-Oriented Electrolyte Replacement in Critical Care: An Artificial Intelligence Reinforcement Learning Approach.
    Prasad N; Mandyam A; Chivers C; Draugelis M; Hanson CW; Engelhardt BE; Laudanski K
    J Pers Med; 2022 Apr; 12(5):. PubMed ID: 35629084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of Electrolyte Replacements in the ICU Utilizing MIMIC-III Dataset Demonstrates Redundant Replacement Patterns.
    Ghannam M; Malihi P; Laudanski K
    Healthcare (Basel); 2021 Oct; 9(10):. PubMed ID: 34683053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioural patterns of electrolyte repletion in intensive care units: lessons from a large electronic dataset.
    Joseph TT; DiMeglio M; Huffenberger A; Laudanski K
    Sci Rep; 2018 Aug; 8(1):11915. PubMed ID: 30093668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an electrolyte repletion protocol for cardiac surgery intensive care patients.
    Couture J; LĂ©tourneau A; Dubuc A; Williamson D
    Can J Hosp Pharm; 2013 Mar; 66(2):96-103. PubMed ID: 23616673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol-driven vs. physician-driven electrolyte replacement in adult critically ill patients.
    Hijazi M; Al-Ansari M
    Ann Saudi Med; 2005; 25(2):105-10. PubMed ID: 15977686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Electrolyte Replacement Protocol Implementation in a Medical Intensive Care Unit.
    Pearson DJ; Sharma A; Lospinoso JA; Morris MJ; McCann ET
    J Intensive Care Med; 2018 Oct; 33(10):574-581. PubMed ID: 27881698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and implementation of an electrolyte replacement protocol in the outpatient oncology infusion centers of a large academic healthcare system.
    Ajewole VB; Solomon JM; Schneider AM; Heyne KE
    J Oncol Pharm Pract; 2020 Dec; 26(8):1871-1877. PubMed ID: 32131681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolyte Analysis and Replacement: Challenging a Paradigm in Surgical Patients.
    Dammann K; Timmons M; Edelman M; Pierce CA; Higdon E; Bernard AC
    J Trauma Nurs; 2020; 27(3):141-145. PubMed ID: 32371730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium and phosphorus repletion in hospitalized patients: implications for clinical practice and the potential use of healthcare information technology to improve prescribing and patient safety.
    Hemstreet BA; Stolpman N; Badesch DB; May SK; McCollum M
    Curr Med Res Opin; 2006 Dec; 22(12):2449-55. PubMed ID: 17257459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning dynamic treatment strategies for coronary heart diseases by artificial intelligence: real-world data-driven study.
    Guo H; Li J; Liu H; He J
    BMC Med Inform Decis Mak; 2022 Feb; 22(1):39. PubMed ID: 35168623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reinforcement learning model to inform optimal decision paths for HIV elimination.
    Khatami SN; Gopalappa C
    Math Biosci Eng; 2021 Sep; 18(6):7666-7684. PubMed ID: 34814269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence-based radiotherapy machine parameter optimization using reinforcement learning.
    Hrinivich WT; Lee J
    Med Phys; 2020 Dec; 47(12):6140-6150. PubMed ID: 33070336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized Multimorbidity Management for Patients with Type 2 Diabetes Using Reinforcement Learning of Electronic Health Records.
    Zheng H; Ryzhov IO; Xie W; Zhong J
    Drugs; 2021 Mar; 81(4):471-482. PubMed ID: 33570745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement Learning for Precision Oncology.
    Eckardt JN; Wendt K; Bornhäuser M; Middeke JM
    Cancers (Basel); 2021 Sep; 13(18):. PubMed ID: 34572853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.
    Liu S; See KC; Ngiam KY; Celi LA; Sun X; Feng M
    J Med Internet Res; 2020 Jul; 22(7):e18477. PubMed ID: 32706670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intravenous phosphate repletion regimen for critically ill patients with moderate hypophosphatemia.
    Rosen GH; Boullata JI; O'Rangers EA; Enow NB; Shin B
    Crit Care Med; 1995 Jul; 23(7):1204-10. PubMed ID: 7600828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an electrolyte replacement protocol in an adult intensive care unit: a retrospective before and after analysis.
    Kanji Z; Jung K
    Intensive Crit Care Nurs; 2009 Aug; 25(4):181-9. PubMed ID: 19398203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an Artificial Intelligence-Based Automated Recommendation System for Clinical Laboratory Tests: Retrospective Analysis of the National Health Insurance Database.
    Islam MM; Yang HC; Poly TN; Li YJ
    JMIR Med Inform; 2020 Nov; 8(11):e24163. PubMed ID: 33206057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.