These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 35629442)
1. The Effect of Clay on the Shear Strength of Microbially Cured Sand Particles. Feng D; Gao H; Li Z; Liang S Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629442 [TBL] [Abstract][Full Text] [Related]
2. Study on the Shear Strength and Erosion Resistance of Sand Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP). Li G; Zhu Q; Liu J; Liu C; Zhang J Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124306 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties of aeolian sand cemented via microbially induced calcite precipitation (MICP). Li G; Zhang YJ; Hua XQ; Liu J; Liu X Sci Rep; 2024 Sep; 14(1):22745. PubMed ID: 39349566 [TBL] [Abstract][Full Text] [Related]
4. Improvement and Soil Consistency of Sand-Clay Mixtures Treated with Enzymatic-Induced Carbonate Precipitation. Mo Y; Yue S; Zhou Q; Liu X Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576362 [TBL] [Abstract][Full Text] [Related]
5. Shear Strength Behaviors of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation and Basalt Fiber Reinforcement. Li G; Liu J; Zhang J; Yang Y; Chen S Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687550 [TBL] [Abstract][Full Text] [Related]
6. Experimental Study on Enhancing the Mechanical Properties of Sandy Soil by Combining Microbial Mineralization Technology with Silty Soil. Hu J; Fan F; Huang L; Yu J Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793429 [TBL] [Abstract][Full Text] [Related]
7. Experimental study of synergistic reinforcement of silty clay with glutinous rice paste and MICP. Hu Q; Chen Q PLoS One; 2023; 18(5):e0284633. PubMed ID: 37167349 [TBL] [Abstract][Full Text] [Related]
8. Preferred injection method and curing mechanism analysis for the curing of loose Pisha sandstone based on microbially induced calcite precipitation. Feng Z; Li X; Shao X; Wang L Environ Sci Pollut Res Int; 2023 Jan; 30(5):12005-12019. PubMed ID: 36103070 [TBL] [Abstract][Full Text] [Related]
9. Strength and deformation characteristics of waste mud-solidified soil. Tang Y; Jiang H; Yang Z; Xiong S; Xu G; Chen J; Shu S Sci Rep; 2024 Jul; 14(1):16976. PubMed ID: 39043781 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of Sand Cementation with an Efficient Method of Microbial-Induced Calcite Precipitation. Wang L; Liu S Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640027 [TBL] [Abstract][Full Text] [Related]
11. Effects of Different Types of Fibers on the Physical and Mechanical Properties of MICP-Treated Calcareous Sand. Zhao J; Tong H; Shan Y; Yuan J; Peng Q; Liang J Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430360 [TBL] [Abstract][Full Text] [Related]
12. Analysis of unconfined compressive strength and environmental impact of MICP-treated lead-zinc tailings sand instead of sand as embankment material. Yang Z; Liu L; Dong Y; Liu X; Wang X Sci Total Environ; 2024 Jun; 931():172809. PubMed ID: 38679087 [TBL] [Abstract][Full Text] [Related]
13. Study on the Solidification Effect of Dredger Fill by Microbial-Induced Calcium Precipitation (MICP). Li J; Tian L; Xu Y; Tian Z; Zhang Z Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431377 [TBL] [Abstract][Full Text] [Related]
14. Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). Liu J; Li X; Li G; Zhang J Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903064 [TBL] [Abstract][Full Text] [Related]
15. A multi-aspect application of microwave radiation on rehabilitating and improving the geotechnical properties of polluted-sand-clay mixture. Sadighi H; Rowshanzamir M; Banitalebi-Dehkordi M J Contam Hydrol; 2022 Aug; 249():104040. PubMed ID: 35691143 [TBL] [Abstract][Full Text] [Related]
16. Shear strength characteristics of a sand clay liner. Dafalla M; Shaker A; Elkady T; Almajed A; Al-Shamrani M Sci Rep; 2020 Oct; 10(1):18226. PubMed ID: 33106512 [TBL] [Abstract][Full Text] [Related]
17. A highly effective strain screened from soil and applied in cementing fine sand based on MICP-bonding technology. Wang X; Li C; He J J Biotechnol; 2022 May; 350():55-66. PubMed ID: 35429551 [TBL] [Abstract][Full Text] [Related]
18. Biocementation of Pyrite Tailings Using Microbially Induced Calcite Carbonate Precipitation. Kang B; Zha F; Deng W; Wang R; Sun X; Lu Z Molecules; 2022 Jun; 27(11):. PubMed ID: 35684545 [TBL] [Abstract][Full Text] [Related]
19. Experimental Study on Silt Soil Improved by Microbial Solidification with the Use of Lignin. Sun Y; Zhong X; Lv J; Wang G Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838245 [TBL] [Abstract][Full Text] [Related]
20. Experimental Study on Bio-Reinforcement of Calcareous Sand through Hydrochloric Acid Solution Precipitation into Cementing Solution. Jiang Z; Wei R; Dai D; Li L; Shang Z; Tang J; Peng J; Li P Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]