These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35629459)
1. Bioactive Propolis-Silane System as Antifungal Agent in Lignocellulosic-Polymer Composites. Odalanowska M; Cofta G; Woźniak M; Ratajczak I; Rydzkowski T; Borysiak S Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629459 [TBL] [Abstract][Full Text] [Related]
2. Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites. Odalanowska M; Woźniak M; Ratajczak I; Zielińska D; Cofta G; Borysiak S Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33478032 [TBL] [Abstract][Full Text] [Related]
3. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana. Irbe I; Andersone I; Andersons B; Noldt G; Dizhbite T; Kurnosova N; Nuopponen M; Stewart D Biodegradation; 2011 Jul; 22(4):719-28. PubMed ID: 21327804 [TBL] [Abstract][Full Text] [Related]
4. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617 [TBL] [Abstract][Full Text] [Related]
5. Chelating efficiency and thermal, mechanical and decay resistance performances of chitosan copper complex in wood-polymer composites. Lu JZ; Duan X; Wu Q; Lian K Bioresour Technol; 2008 Sep; 99(13):5906-14. PubMed ID: 18248812 [TBL] [Abstract][Full Text] [Related]
6. Chemical Characterization and Visualization of Progressive Brown Rot Decay of Wood by Near Infrared Imaging and Multivariate Analysis. Belt T; Awais M; Mäkelä M Front Plant Sci; 2022; 13():940745. PubMed ID: 35903225 [TBL] [Abstract][Full Text] [Related]
7. Alumina as an Antifungal Agent for Acosta AP; Gallio E; Cruz N; Aramburu AB; Lunkes N; Missio AL; Delucis RA; Gatto DA J Fungi (Basel); 2022 Dec; 8(12):. PubMed ID: 36547632 [TBL] [Abstract][Full Text] [Related]
8. Outdoor Wood Mats-Based Engineering Composite: Influence of Process Parameters on Decay Resistance against Wood-Degrading Fungi Bao M; Li N; Bao Y; Li J; Zhong H; Chen Y; Yu Y Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578072 [TBL] [Abstract][Full Text] [Related]
9. Functional MgO-Lignin Hybrids and Their Application as Fillers for Polypropylene Composites. Grząbka-Zasadzińska A; Klapiszewski Ł; Jesionowski T; Borysiak S Molecules; 2020 Feb; 25(4):. PubMed ID: 32079079 [TBL] [Abstract][Full Text] [Related]
10. Composite Material Based on Polypropylene and Modified Natural Fillers. Fayzullin I; Gorbachev A; Volfson S; Serikbayev Y; Nakyp A; Akylbekov N Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932053 [TBL] [Abstract][Full Text] [Related]
11. Poly( Dobrzyńska-Mizera M; Knitter M; Woźniak-Braszak A; Baranowski M; Sterzyński T; Di Lorenzo ML Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859082 [TBL] [Abstract][Full Text] [Related]
12. The Accelerated Aging Impact on Mechanical and Thermal Properties of Polypropylene Composites with Sedimentary Rock Opoka-Hybrid Natural Filler. Jakubowska P; Borkowski G; Brząkalski D; Sztorch B; Kloziński A; Przekop RE Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009483 [TBL] [Abstract][Full Text] [Related]
13. The Influence of Processing and the Polymorphism of Lignocellulosic Fillers on the Structure and Properties of Composite Materials-A Review. Paukszta D; Borysiak S Materials (Basel); 2013 Jul; 6(7):2747-2767. PubMed ID: 28811406 [TBL] [Abstract][Full Text] [Related]
14. [FTIR studies of masson pine wood decayed by brown-rot fungi]. Li GY; Huang AM; Qin TF; Huang LH Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2133-6. PubMed ID: 20939323 [TBL] [Abstract][Full Text] [Related]
15. Characteristics of the Waste Wood Biomass and Its Effect on the Properties of Wood Sanding Dust/Recycled PP Composite. Vitolina S; Shulga G; Neiberte B; Jaunslavietis J; Verovkins A; Betkers T Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160458 [TBL] [Abstract][Full Text] [Related]
16. Distinguishing the Signs of Fungal and Burial-Induced Degradation in Waterlogged Wood from Biskupin (Poland) by Scanning Electron Microscopy. Tamburini D; Cartwright CR; Cofta G; Zborowska M; Mamoňová M Microsc Microanal; 2018 Apr; 24(2):163-182. PubMed ID: 29607797 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498 [TBL] [Abstract][Full Text] [Related]
18. A Fungal Secretome Adapted for Stress Enabled a Radical Wood Decay Mechanism. Castaño J; Zhang J; Zhou M; Tsai CF; Lee JY; Nicora C; Schilling J mBio; 2021 Aug; 12(4):e0204021. PubMed ID: 34399614 [TBL] [Abstract][Full Text] [Related]
19. Non-enzymatic modification of the crystalline structure and chemistry of Masson pine in brown-rot decay. Zhu Y; Li W; Meng D; Li X; Goodell B Carbohydr Polym; 2022 Jun; 286():119242. PubMed ID: 35337493 [TBL] [Abstract][Full Text] [Related]
20. Machine learning strategy to improve impact strength for PP/cellulose composites via selection of biomass fillers. Nakayama K; Sakakibara K Sci Technol Adv Mater; 2024; 25(1):2351356. PubMed ID: 38817247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]