These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35629477)
21. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Heroult J; Nischwitz V; Bartczak D; Goenaga-Infante H Anal Bioanal Chem; 2014 Jun; 406(16):3919-27. PubMed ID: 24817355 [TBL] [Abstract][Full Text] [Related]
22. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373 [TBL] [Abstract][Full Text] [Related]
23. Stability of polydimethylsiloxane-magnetite nanoparticle dispersions against flocculation: interparticle interactions of polydisperse materials. Mefford OT; Vadala ML; Goff JD; Carroll MR; Mejia-Ariza R; Caba BL; Pierre TG; Woodward RC; Davis RM; Riffle JS Langmuir; 2008 May; 24(9):5060-9. PubMed ID: 18366222 [TBL] [Abstract][Full Text] [Related]
24. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Sauter C; Emin MA; Schuchmann HP; Tavman S Ultrason Sonochem; 2008 Apr; 15(4):517-523. PubMed ID: 17977777 [TBL] [Abstract][Full Text] [Related]
25. Acoustic spectroscopy of colloids dispersed in a polymer gel system. Bhosale PS; Berg JC Langmuir; 2010 Sep; 26(18):14423-6. PubMed ID: 20722458 [TBL] [Abstract][Full Text] [Related]
26. Electrorheological properties and microstructure of silica suspensions. Gehin C; Persello J; Charraut D; Cabane B J Colloid Interface Sci; 2004 May; 273(2):658-67. PubMed ID: 15082407 [TBL] [Abstract][Full Text] [Related]
27. Estimation of the concentration of particles in suspension based on envelope statistics of ultrasound backscattering. Fernández A; Ibáñez A; Parrilla M; Elvira L; Bassat Q; Jiménez J Ultrasonics; 2021 Sep; 116():106501. PubMed ID: 34147922 [TBL] [Abstract][Full Text] [Related]
28. Colloidal crystallization and structural changes in suspensions of silica/magnetite core-shell nanoparticles. Malik V; Petukhov AV; He L; Yin Y; Schmidt M Langmuir; 2012 Oct; 28(41):14777-83. PubMed ID: 22794064 [TBL] [Abstract][Full Text] [Related]
29. Structuring from nanoparticles in oil-based ferrofluids. Rozynek Z; Józefczak A; Knudsen KD; Skumiel A; Hornowski T; Fossum JO; Timko M; Kopčanský P; Koneracká M Eur Phys J E Soft Matter; 2011 Mar; 34(3):28. PubMed ID: 21416265 [TBL] [Abstract][Full Text] [Related]
30. Effect of magnetite nanoparticle agglomerates on ultrasound induced inertial cavitation. Smith MJ; Ho VH; Darton NJ; Slater NK Ultrasound Med Biol; 2009 Jun; 35(6):1010-4. PubMed ID: 19251358 [TBL] [Abstract][Full Text] [Related]
31. Nanoparticle Tracking Analysis for Multiparameter Characterization and Counting of Nanoparticle Suspensions. Griffiths D; Carnell-Morris P; Wright M Methods Mol Biol; 2020; 2118():289-303. PubMed ID: 32152988 [TBL] [Abstract][Full Text] [Related]
32. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Choi J; Reipa V; Hitchins VM; Goering PL; Malinauskas RA Toxicol Sci; 2011 Sep; 123(1):133-43. PubMed ID: 21652737 [TBL] [Abstract][Full Text] [Related]
33. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles. Matsumoto H; Nagao D; Konno M Langmuir; 2010 Mar; 26(6):4207-11. PubMed ID: 19824685 [TBL] [Abstract][Full Text] [Related]
34. Brownian motion of aggregating nanoparticles studied by photon correlation spectroscopy and measurements of dynamic magnetic properties. Petersson K; Ilver D; Johansson C; Krozer A Anal Chim Acta; 2006 Jul; 573-574():138-46. PubMed ID: 17723517 [TBL] [Abstract][Full Text] [Related]
35. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation. Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459 [TBL] [Abstract][Full Text] [Related]
36. Particle Surface Roughness Improves Colloidal Stability of Pressurized Pharmaceutical Suspensions. Wang H; Nobes DS; Vehring R Pharm Res; 2019 Jan; 36(3):43. PubMed ID: 30701324 [TBL] [Abstract][Full Text] [Related]
37. Physico-chemical characterization in the light of toxicological effects. Meissner T; Potthoff A; Richter V Inhal Toxicol; 2009 Jul; 21 Suppl 1():35-9. PubMed ID: 19558232 [TBL] [Abstract][Full Text] [Related]
38. Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field. Marć M; Drzewiński A; Wolak WW; Najder-Kozdrowska L; Dudek MR Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361123 [TBL] [Abstract][Full Text] [Related]
39. Experimental estimation of the viscous component of ultrasound attenuation in suspensions of bovine skeletal muscle myofibrils. Shore D; Miles CA Ultrasonics; 1988 Jan; 26(1):31-6. PubMed ID: 3336920 [TBL] [Abstract][Full Text] [Related]
40. Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions. Katepalli H; John VT; Tripathi A; Bose A J Colloid Interface Sci; 2017 Jan; 485():11-17. PubMed ID: 27639169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]