These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35629507)

  • 1. Spatial Dispersion in Hypercrystal Distributed Feedback Lasing.
    Janaszek B; Szczepański P
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed Feedback Laser Based on Tunable Photonic Hypercrystal.
    Janaszek B; Szczepański P
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals.
    Xia J; Chen Y; Xiang Y
    Opt Express; 2021 Apr; 29(8):12160-12168. PubMed ID: 33984981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion-enabled control of photonic density of states in photonic hypercrystals.
    Janaszek B; Tyszka-Zawadzka A; Szczepański P
    Opt Express; 2023 Aug; 31(17):27948-27961. PubMed ID: 37710860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons.
    Herzig Sheinfux H; Jung M; Orsini L; Ceccanti M; Mahalanabish A; Martinez-Cercós D; Torre I; Barcons Ruiz D; Janzen E; Edgar JH; Pruneri V; Shvets G; Koppens FHL
    ACS Nano; 2023 Apr; 17(8):7377-7383. PubMed ID: 37010352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic regulation of nonlocal effect and nonlocal degree in gyromagnetic metamaterials with an applied magnetic field.
    Zhang Y; Wang G; Deng D; Zhang J; Zhang T
    Opt Express; 2019 Nov; 27(24):35524-35536. PubMed ID: 31878722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diversity of isofrequency surface topologies in a hypercrystal composed of ferrite- and semiconductor-based metamaterials.
    Fedorin I
    Sci Rep; 2023 Sep; 13(1):16151. PubMed ID: 37752262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals.
    Wang JR; Chen XD; Zhao FL; Dong JW
    Sci Rep; 2016 Mar; 6():22739. PubMed ID: 26956377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabry-Pérot modes associated with hyperbolic-like dispersion in dielectric photonic crystals and demonstration of a bending angle sensor at microwave frequencies.
    Darthy RR; Venkateswaran C; Subramanian V; Ouyang Z; Yogesh N
    Sci Rep; 2020 Jul; 10(1):11117. PubMed ID: 32632230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals.
    Galfsky T; Sun Z; Considine CR; Chou CT; Ko WC; Lee YH; Narimanov EE; Menon VM
    Nano Lett; 2016 Aug; 16(8):4940-5. PubMed ID: 27420735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Twisted Bands with Degenerate Points of Photonic Hypercrystals in Infrared Region.
    Zheng Y; Wang Q; Lin M; Bibbò L; Ouyang Z
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-mode distributed feedback lasing using photonic bandgaps to suppress degenerate modes.
    Tennant BA; Maywar DN
    Opt Lett; 2022 Jul; 47(13):3367-3370. PubMed ID: 35776626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed feedback lasing based on a negative-index metamaterial waveguide.
    Tennant BA; Ara R; Atwiri A; Agrawal GP; Litchinitser NM; Maywar DN
    Opt Lett; 2019 Sep; 44(18):4586-4589. PubMed ID: 31517937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared ITO-based photonic hypercrystals with large angle-insensitive bandgaps.
    Shen KS; Li XK; Zheng Y; Liu HC; Dong SQ; Zhang J; Xia SQ; Dong C; Sun XL; Zhang XZ; Xue CH; Lu H
    Opt Lett; 2022 Feb; 47(4):917-920. PubMed ID: 35167558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TM and TE propagating modes of photonic crystal waveguide based on honeycomb lattices.
    Mao H; Wang J; Yu K; Zhu Z
    Appl Opt; 2010 Dec; 49(34):6597-601. PubMed ID: 21124536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nonlocality in spatially uniform anisotropic metamaterials.
    Janaszek B; Szczepański P
    Opt Express; 2020 May; 28(10):15447-15458. PubMed ID: 32403572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlocal response of hyperbolic metasurfaces.
    Correas-Serrano D; Gomez-Diaz JS; Tymchenko M; Alù A
    Opt Express; 2015 Nov; 23(23):29434-48. PubMed ID: 26698427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Spatial Dispersion on Propagation Properties of Waveguides Based on Hyperbolic Metamaterial.
    Janaszek B; Tyszka-Zawadzka A; Szczepański P
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic hypercrystals for control of light-matter interactions.
    Galfsky T; Gu J; Narimanov EE; Menon VM
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5125-5129. PubMed ID: 28461458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-mode in-gap emission of medium-width photonic crystal waveguides on InP substrate.
    Checoury X; Crozat P; Lourtioz JM; Cuisin C; Derouin E; Drisse O; Poigt F; Legouezigou L; Legouezigou O; Pommereau P; Duan GH; Gauthier-Lafaye O; Bonnefont S; Mulin D; Lozes-Dupuy F; Talneau A
    Opt Express; 2005 Sep; 13(18):6947-55. PubMed ID: 19498715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.