These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35629508)

  • 1. Advances in Permanent Deformation Modeling of Asphalt Concrete-A Review.
    Alamnie MM; Taddesse E; Hoff I
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of High-Temperature Properties of Asphalt Mixtures Used for Bridge Pavement with Concrete Deck.
    Pokorski P; Radziszewski P; Sarnowski M
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field Evaluation of High Modulus Asphalt Concrete Resistance to Low-Temperature Cracking.
    Pszczola M; Rys D; Jaczewski M
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold In-Place Recycling Asphalt Mixtures: Laboratory Performance and Preliminary M-E Design Analysis.
    Jin D; Ge D; Chen S; Che T; Liu H; Malburg L; You Z
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting asphalt concrete permanent deformation: Experimental dataset for uniaxial repeated load test.
    Albayati AH
    Data Brief; 2024 Apr; 53():110224. PubMed ID: 38435730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Experimental Study on Properties of Pre-Coated Aggregates Grouting Asphalt Concrete for Bridge Deck Pavement.
    Xiao Z; Huang W; Wu K; Nie G; Hassan HMZ; Hu B
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in the Deformation and Failure of Concrete Pavement under Coupling Action of Moisture, Temperature, and Wheel Load.
    Dong W; Liu C; Bao X; Xiang T; Chen D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic Analysis of Asphalt Concrete with a Digitally Reconstructed Microstructure.
    Klimczak M
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Stone Mastic Asphalt Containing Ceramic Waste Aggregate for Cooling Asphalt Pavement.
    Huang Q; Qian Z; Hu J; Zheng D
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Nonlinear Fractional Viscoelastic-Plastic Creep Model of Asphalt Mixture.
    Zhang Y; Liu X; Yin B; Luo W
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33919963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.
    Sung Do H; Hee Mun P; Suk keun R
    Waste Manag; 2008; 28(1):191-9. PubMed ID: 17408942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method of Fatigue-Life Prediction for an Asphalt Mixture Based on the Plateau Value of Permanent Deformation Ratio.
    Sun Y; Fang C; Wang J; Yuan X; Fan D
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Aggregate Mesostructure on Permanent Deformation of Asphalt Mixture Using Three-Dimensional Discrete Element Modeling.
    Zhang D; Gu L; Zhu J
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31684016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Steel Slag Aggregate on Pavement and Flame-Retardant Performance of Warm-Mixed Flame-Retardant Asphalt Concrete.
    Ren Y; Chen M; Yang T; Wu S; Wang K
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33573091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Improving the Durability of Bridge Pavement Using a High-Modulus Asphalt Mixture.
    Wang W; Duan S; Zhu H
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concept of Similarity Method for Prediction of Fatigue Life of Pavement Structures with HiMA Binder in Asphalt Layers.
    Złotowska M; Nagórski R; Błażejowski K
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33498367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Prediction Model on Viscoelastic Fatigue Damage of Asphalt Mixture.
    Li L; Jiang X; Lin Y; Yan H
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32867202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Inelastic Constitutive Modeling: Polycrystalline Materials.
    Baig M; Owusu-Danquah J; Campbell AA; Duffy SF
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Cracking Evolution and Model of Cold Recycled Asphalt Mixtures during Different Curing Times.
    Xia Y; Lin J; Chen Z; Cai J; Hong J; Zhu X
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Zero Shear Viscosity of TLA-Modified Binder and Mastic Composition on the Permanent Deformation Resistance of Mastic Asphalt Mixture.
    Kołodziej K; Bichajło L; Siwowski T
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.