These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35629608)

  • 21. Influence of Scanning on Nano Crystalline
    Yan L; Yu J; Zhong Y; Gu Y; Ma Y; Li W; Yan J; Ge Y; Yin J; Luo Y; Mirzasadeghi A; Yuan Y
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1605-1612. PubMed ID: 31492322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications.
    Ozan S; Lin J; Li Y; Wen C
    J Mech Behav Biomed Mater; 2017 Nov; 75():119-127. PubMed ID: 28711024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cold Rolling Deformation Characteristic of a Biomedical Beta Type Ti-25Nb-3Zr-2Sn-3Mo Alloy Plate and Its Influence on α Precipitated Phases and Room Temperature Mechanical Properties During Aging Treatment.
    Cheng J; Li J; Yu S; Du Z; Zhang X; Zhang W; Gai J; Wang H; Song H; Yu Z
    Front Bioeng Biotechnol; 2020; 8():598529. PubMed ID: 33195170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermomechanical processing of In-containing β-type Ti-Nb alloys.
    Pilz S; Geissler D; Calin M; Eckert J; Zimmermann M; Freudenberger J; Gebert A
    J Mech Behav Biomed Mater; 2018 Mar; 79():283-291. PubMed ID: 29348069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effect of Hot Working on the Mechanical Properties of High Strength Biomedical Ti-Nb-Ta-Zr-O Alloy.
    Preisler D; Janeček M; Harcuba P; Džugan J; Halmešová K; Málek J; Veverková A; Stráský J
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31861121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wear resistance of experimental titanium alloys for dental applications.
    Faria AC; Rodrigues RC; Claro AP; da Gloria Chiarello de Mattos M; Ribeiro RF
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1873-9. PubMed ID: 22098886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.
    Wang P; Feng Y; Liu F; Wu L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superelasticity Evaluation of the Biocompatible Ti-17Nb-6Ta Alloy.
    Keshtta A; Gepreel MA
    J Healthc Eng; 2019; 2019():8353409. PubMed ID: 30728927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nb-Ti-Zr alloys for orthopedic implants.
    Zhang T; Ou P; Ruan J; Yang H
    J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring a Low Young Modulus for a Beta Titanium Alloy by Combining Severe Plastic Deformation with Solution Treatment.
    Nocivin A; Raducanu D; Vasile B; Trisca-Rusu C; Cojocaru EM; Dan A; Irimescu R; Cojocaru VD
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructural investigation of stress-assisted α″-α' phase transformation in cold-rolled Ti-7.5Mo alloy.
    Chen YC; Ju CP; Chern Lin JH
    Micron; 2014 Oct; 65():34-44. PubMed ID: 25041829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.
    Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG
    J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strengthening of a Near β-Ti Alloy through β Grain Refinement and Stress-Induced α Precipitation.
    Chen W; Li C; Feng K; Lin Y; Zhang X; Chen C; Zhou K
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement.
    Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H
    Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation, structural, microstructural, mechanical, and cytotoxic characterization of Ti-15Nb alloy for biomedical applications.
    Kuroda PAB; da Silva LM; Sousa KDSJ; Donato TAG; Grandini CR
    Artif Organs; 2020 Aug; 44(8):811-817. PubMed ID: 31876963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on Grain Refinement Mechanisms and Mechanical Properties of bi-Modal Ti-55511 Titanium Alloy during Hot Rolling.
    Chen W; Zhang X; Lin Y; Zhou K
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32731500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of niobium content on the microstructure and Young's modulus of Ti-xNb-7Zr alloys for medical implants.
    Tan MHC; Baghi AD; Ghomashchi R; Xiao W; Oskouei RH
    J Mech Behav Biomed Mater; 2019 Nov; 99():78-85. PubMed ID: 31344525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical and biological properties of Ti-(0-25 wt%)Nb alloys for biomedical implants application.
    Zhang Y; Sun D; Cheng J; Tsoi JKH; Chen J
    Regen Biomater; 2020 Feb; 7(1):119-127. PubMed ID: 32153995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys.
    Gabriel SB; Nunes CA; Soares Gde A
    Artif Organs; 2008 Apr; 32(4):299-304. PubMed ID: 18370944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.