These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35629749)

  • 21. Wafer-scale single-domain-like graphene by defect-selective atomic layer deposition of hexagonal ZnO.
    Park KS; Kim S; Kim H; Kwon D; Lee YE; Min SW; Im S; Choi HJ; Lim S; Shin H; Koo SM; Sung MM
    Nanoscale; 2015 Nov; 7(42):17702-9. PubMed ID: 26452020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD.
    Kato T; Hatakeyama R
    ACS Nano; 2012 Oct; 6(10):8508-15. PubMed ID: 22971147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitive Characterization of the Graphene Transferred onto Varied Si Wafer Surfaces via Terahertz Emission Spectroscopy and Microscopy (TES/LTEM).
    Yang D; Laarman JH; Tonouchi M
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid and Scalable Transfer of Large-Area Graphene Wafers.
    Hu Z; Li F; Wu H; Liao J; Wang Q; Chen G; Shi Z; Zhu Y; Bu S; Zhao Y; Shang M; Lu Q; Jia K; Xie Q; Wang G; Zhang X; Zhu Y; Wu H; Peng H; Lin L; Liu Z
    Adv Mater; 2023 Jul; 35(29):e2300621. PubMed ID: 37027890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of low doped monolayer graphene on SiC(0001) via sublimation at low argon pressure.
    Landois P; Wang T; Nachawaty A; Bayle M; Decams JM; Desrat W; Zahab AA; Jouault B; Paillet M; Contreras S
    Phys Chem Chem Phys; 2017 Jun; 19(24):15833-15841. PubMed ID: 28585655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers.
    Cunning BV; Ahmed M; Mishra N; Kermany AR; Wood B; Iacopi F
    Nanotechnology; 2014 Aug; 25(32):325301. PubMed ID: 25053702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of copper thin film loss during graphene synthesis.
    Lee AL; Tao L; Akinwande D
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1527-32. PubMed ID: 25552194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene.
    Kitzmann J; Göritz A; Fraschke M; Lukosius M; Wenger C; Wolff A; Lupina G
    Sci Rep; 2016 Jul; 6():29223. PubMed ID: 27381715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-thin Graphitic Film: Synthesis and Physical Properties.
    Kaplas T; Kuzhir P
    Nanoscale Res Lett; 2016 Dec; 11(1):54. PubMed ID: 26831692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale.
    Berman D; Deshmukh SA; Narayanan B; Sankaranarayanan SK; Yan Z; Balandin AA; Zinovev A; Rosenmann D; Sumant AV
    Nat Commun; 2016 Jul; 7():12099. PubMed ID: 27373740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate.
    Li J; Chen M; Samad A; Dong H; Ray A; Zhang J; Jiang X; Schwingenschlögl U; Domke J; Chen C; Han Y; Fritz T; Ruoff RS; Tian B; Zhang X
    Nat Mater; 2022 Jul; 21(7):740-747. PubMed ID: 35058609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene growth on Ge(100)/Si(100) substrates by CVD method.
    Pasternak I; Wesolowski M; Jozwik I; Lukosius M; Lupina G; Dabrowski P; Baranowski JM; Strupinski W
    Sci Rep; 2016 Feb; 6():21773. PubMed ID: 26899732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insulating SiO
    Guo H; Wang X; Huang L; Jin X; Yang Z; Zhou Z; Hu H; Zhang YY; Lu H; Zhang Q; Shen C; Lin X; Gu L; Dai Q; Bao L; Du S; Hofer W; Pantelides ST; Gao HJ
    Nano Lett; 2020 Dec; 20(12):8584-8591. PubMed ID: 33200603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling Water Intercalation Is Key to a Direct Graphene Transfer.
    Verguts K; Schouteden K; Wu CH; Peters L; Vrancken N; Wu X; Li Z; Erkens M; Porret C; Huyghebaert C; Van Haesendonck C; De Gendt S; Brems S
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37484-37492. PubMed ID: 28972738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and Characterisation Studies of Eu
    Aboljadayel ROM; Ionescu A; Burton OJ; Cheglakov G; Hofmann S; Barnes CHW
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.
    Abdelhafiz A; Vitale A; Joiner C; Vogel E; Alamgir FM
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6180-8. PubMed ID: 25730297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.
    Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Crystalline Monolayer Graphene Wafer on Dielectric Substrate of SiON without Metal Catalysts.
    Shin BG; Boo DH; Song B; Jeon S; Kim M; Park S; An ES; Kim JS; Song YJ; Lee YH
    ACS Nano; 2019 Jun; 13(6):6662-6669. PubMed ID: 31187979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.