These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35630142)

  • 21. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.
    Cho H; Park J; Park JY
    J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.
    Kim M; Lee SK; Yang YS; Jeong J; Min NK; Kwon KH
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7932-7. PubMed ID: 24266167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate.
    Panayanthatta N; Clementi G; Ouhabaz M; Margueron S; Bartasyte A; Lallart M; Basrour S; La Rosa R; Bano E; Montes L
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiency enhancement of a cantilever-based vibration energy harvester.
    Kubba AE; Jiang K
    Sensors (Basel); 2013 Dec; 14(1):188-211. PubMed ID: 24366177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and Characterization of the Li-Doped ZnO Thin Films Piezoelectric Energy Harvester with Multi-Resonant Frequencies.
    Zhao X; Li S; Ai C; Liu H; Wen D
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bi-Directional Piezoelectric Multi-Modal Energy Harvester Based on Saw-Tooth Cantilever Array.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodal Multidirectional Piezoelectric Vibration Energy Harvester by U-Shaped Structure with Cross-Connected Beams.
    Qin H; Mo S; Jiang X; Shang S; Wang P; Liu Y
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wind-Speed-Adaptive Resonant Piezoelectric Energy Harvester for Offshore Wind Energy Collection.
    Wu W; Pan Z; Zhou J; Wang Y; Ma J; Li J; Hu Y; Wen J; Wang X
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field.
    Chen CD; Wu YH; Su PW
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator.
    Deng W; Jin L; Chen Y; Chu W; Zhang B; Sun H; Xiong D; Lv Z; Zhu M; Yang W
    Nanoscale; 2018 Jan; 10(2):843-847. PubMed ID: 29261199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.