BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35630144)

  • 1. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis.
    David IG; Buleandra M; Popa DE; Cheregi MC; Iorgulescu EE
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances on the chromatographic determination of amphenicols in food.
    Guidi LR; Tette PA; Fernandes C; Silva LH; Gloria MB
    Talanta; 2017 Jan; 162():324-338. PubMed ID: 27837837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of LC-MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-β-d-glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver.
    Fedeniuk RW; Mizuno M; Neiser C; O'Byrne C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jun; 991():68-78. PubMed ID: 25913426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening method for the detection of residues of amphenicol antibiotics in bovine milk by optical biosensor.
    Thompson CS; Traynor IM; Fodey TL; Barnes P; Faulkner DV; Crooks SRH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Nov; 37(11):1854-1864. PubMed ID: 32910860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unified Strategy to Amphenicol Antibiotics: Asymmetric Synthesis of (-)-Chloramphenicol, (-)-Azidamphenicol, and (+)-Thiamphenicol and Its (+)-3-Floride.
    Liu J; Li Y; Ke M; Liu M; Zhan P; Xiao YC; Chen F
    J Org Chem; 2020 Dec; 85(23):15360-15367. PubMed ID: 33169603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of amphenicol antibiotics and their glucuronide metabolites in urine samples using liquid chromatography with quadrupole time-of-flight mass spectrometry.
    Pastor-Belda M; Campillo N; Arroyo-Manzanares N; Hernández-Córdoba M; Viñas P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jun; 1146():122122. PubMed ID: 32334391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast extraction of amphenicols residues from raw milk using novel fabric phase sorptive extraction followed by high-performance liquid chromatography-diode array detection.
    Samanidou V; Galanopoulos LD; Kabir A; Furton KG
    Anal Chim Acta; 2015 Jan; 855():41-50. PubMed ID: 25542088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel G2073A mutation in 23S rRNA in amphenicol-selected mutants of Campylobacter jejuni.
    Ma L; Shen Z; Naren G; Li H; Xia X; Wu C; Shen J; Zhang Q; Wang Y
    PLoS One; 2014; 9(4):e94503. PubMed ID: 24728007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergism between two amphenicol of antibiotics, florfenicol and thiamphenicol, against Staphylococcus aureus.
    Wei CF; Chang SK; Shien JH; Kuo HC; Chen WY; Chou CC
    Vet Rec; 2016 Mar; 178(13):319. PubMed ID: 26864028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and sensitive determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in human urine samples using UHPLC-MS/MS.
    Yao Y; Shao Y; Zhan M; Zou X; Qu W; Zhou Y
    Anal Bioanal Chem; 2018 Jun; 410(16):3871-3883. PubMed ID: 29671029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin.
    Mitchell SM; Ullman JL; Teel AL; Watts RJ
    Chemosphere; 2015 Sep; 134():504-11. PubMed ID: 25618189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity.
    Franje CA; Chang SK; Shyu CL; Davis JL; Lee YW; Lee RJ; Chang CC; Chou CC
    J Pharm Biomed Anal; 2010 Dec; 53(4):869-77. PubMed ID: 20619994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical methods for the determination of antibiotic residues in milk: A critical review.
    de Faria LV; Lisboa TP; Campos NDS; Alves GF; Matos MAC; Matos RC; Munoz RAA
    Anal Chim Acta; 2021 Aug; 1173():338569. PubMed ID: 34172150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry.
    Liu HY; Lin SL; Fuh MR
    Talanta; 2016 Apr; 150():233-9. PubMed ID: 26838404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LC-MS/MS-based determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry meat from the Punjab-Pakistan.
    Imran M; Habib FE; Majeed S; Tawab A; Rauf W; Rahman M; Umer M; Iqbal M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Aug; 35(8):1530-1542. PubMed ID: 29648964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (Electro)Sensing of Phenicol Antibiotics-A Review.
    Pilehvar S; Gielkens K; Trashin SA; Dardenne F; Blust R; De Wael K
    Crit Rev Food Sci Nutr; 2016 Oct; 56(14):2416-29. PubMed ID: 25830490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening method for the detection of residues of amphenicol antibiotics in bovine, ovine and porcine kidney by optical biosensor.
    Thompson CS; Traynor IM; Fodey TL; Faulkner DV; Crooks SRH
    Talanta; 2017 Sep; 172():120-125. PubMed ID: 28602283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic
    Xia Y; Jiang M; Liu M; Zhang Y; Qu H; Xiong T; Huang H; Cheng D; Chen F
    J Org Chem; 2021 Sep; 86(17):11557-11570. PubMed ID: 34387504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics.
    K J A; Reddy S; Acharya S; B L; Deepak K; Naveen CS; Harish KN; Ramakrishna S
    Anal Methods; 2022 Sep; 14(34):3228-3249. PubMed ID: 35997206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urinary concentrations of amphenicol antibiotics in relation to biomarkers of oxidative DNA and RNA damage in school children.
    Geng Y; Hu M; Yao Y; Zhan M; Zhou Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(6):470-478. PubMed ID: 35635089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.