These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35630153)

  • 21. Independent Manipulating of Orthogonal-Polarization Terahertz Waves Using A Reconfigurable Graphene-Based Metasurface.
    Deng L; Zhang Y; Zhu J; Qu M; Wang L; Zhang C
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Terahertz beam steering using active diffraction grating fabricated by 3D printing.
    Seifert JM; Hernandez-Cardoso GG; Koch M; Castro-Camus E
    Opt Express; 2020 Jul; 28(15):21737-21744. PubMed ID: 32752446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible Ultra-Wideband Terahertz Absorber Based on Vertically Aligned Carbon Nanotubes.
    Xiao D; Zhu M; Sun L; Zhao C; Wang Y; Tong Teo EH; Hu F; Tu L
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43671-43680. PubMed ID: 31640338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-Dielectric Tunable Terahertz Metagrating for Diffraction Control.
    Shi J; Gao H; Jia X; Tang L; Li X; Ma H; Li X; Bai H; Wang X; Niu P; Yao J
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55174-55182. PubMed ID: 36414393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Fabrication of Large-Area, Uniform Graphene Nanomeshes for High-Speed, Room-Temperature Direct Terahertz Detection.
    Yuan W; Li M; Wen Z; Sun Y; Ruan D; Zhang Z; Chen G; Gao Y
    Nanoscale Res Lett; 2018 Jul; 13(1):190. PubMed ID: 29971642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons.
    Chen D; Yang J; Zhang J; Huang J; Zhang Z
    Sci Rep; 2017 Nov; 7(1):15836. PubMed ID: 29158569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-Beam Steering for 6G Communications Based on Graphene Metasurfaces.
    Ai H; Kang Q; Wang W; Guo K; Guo Z
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Terahertz Beam Steering Concept Based on a MEMS-Reconfigurable Reflection Grating.
    Liu X; Samfaß L; Kolpatzeck K; Häring L; Balzer JC; Hoffmann M; Czylwik A
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversified functions for a terahertz metasurface with a simple structure.
    Pan WM; Li JS
    Opt Express; 2021 Apr; 29(9):12918-12929. PubMed ID: 33985037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible Terahertz Beam Manipulations Based on Liquid-Crystal-Integrated Programmable Metasurfaces.
    Fu X; Shi L; Yang J; Fu Y; Liu C; Wu JW; Yang F; Bao L; Cui TJ
    ACS Appl Mater Interfaces; 2022 May; 14(19):22287-22294. PubMed ID: 35476394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Performance All-Optical Terahertz Modulator Based on Graphene/TiO
    Wei M; Zhang D; Li Y; Zhang L; Jin L; Wen T; Bai F; Zhang H
    Nanoscale Res Lett; 2019 May; 14(1):159. PubMed ID: 31076907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].
    Liu WT; Li JW; Sun ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):577-81. PubMed ID: 20496663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.
    Li H; Wan WJ; Tan ZY; Fu ZL; Wang HX; Zhou T; Li ZP; Wang C; Guo XG; Cao JC
    Sci Rep; 2017 Jun; 7(1):3452. PubMed ID: 28615654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optically Controlled Terahertz Dynamic Beam Splitter with Adjustable Split Ratio.
    Yin S; Zeng D; Chen Y; Huang W; Zhang C; Zhang W; E Y
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 300-GHz low-cost high-gain fully metallic Fabry-Perot cavity antenna for 6G terahertz wireless communications.
    Aqlan B; Himdi M; Vettikalladi H; Le-Coq L
    Sci Rep; 2021 Apr; 11(1):7703. PubMed ID: 33833287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization for vertically scanning terahertz attenuated total reflection imaging.
    Liu H; Wang Y; Xu D; Jiang Z; Li J; Wu L; Yan C; Tang L; He Y; Yan D; Ding X; Feng H; Yao J
    Opt Express; 2018 Aug; 26(16):20744-20757. PubMed ID: 30119380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.
    Kindness SJ; Jessop DS; Wei B; Wallis R; Kamboj VS; Xiao L; Ren Y; Braeuninger-Weimer P; Aria AI; Hofmann S; Beere HE; Ritchie DA; Degl'Innocenti R
    Sci Rep; 2017 Aug; 7(1):7657. PubMed ID: 28794444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Cherenkov-type optical-to-terahertz converter with terahertz beam combining.
    Bakunov MI; Efimenko ES; Gorelov SD; Abramovsky NA; Bodrov SB
    Opt Lett; 2020 Jul; 45(13):3533-3536. PubMed ID: 32630891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vanadium Dioxide-Based Terahertz Metamaterial Devices Switchable between Transmission and Absorption.
    Jiang H; Wang Y; Cui Z; Zhang X; Zhu Y; Zhang K
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacial π-π Interactions Induced Ultralight, 300 °C-Stable, Wideband Graphene/Polyaramid Foam for Electromagnetic Wave Absorption in Both Gigahertz and Terahertz Bands.
    Cheng Z; Wang R; Cao Y; Zhang Z; Ma W; Zhang T; Fan F; Huang Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3218-3232. PubMed ID: 34985242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.