These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 35630222)
1. Microfluidics for High Pressure: Integration on GaAs Acoustic Biosensors with a Leakage-Free PDMS Based on Bonding Technology. Hammami S; Oseev A; Bargiel S; Zeggari R; Elie-Caille C; Leblois T Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630222 [TBL] [Abstract][Full Text] [Related]
2. A Versatile Bonding Method for PDMS and SU-8 and Its Application towards a Multifunctional Microfluidic Device. Zhu Z; Chen P; Liu K; Escobedo C Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404401 [TBL] [Abstract][Full Text] [Related]
3. Irreversible Bonding of Polydimethylsiloxane-Lithium Niobate using Oxygen Plasma Modification for Surface Acoustic Wave based Microfluidic Application: Theory and Experiment. He C; Yao J; Yang C; Wang J; Sun B; Liao G; Shi T; Liu Z Small Methods; 2024 May; 8(5):e2301321. PubMed ID: 38054603 [TBL] [Abstract][Full Text] [Related]
4. A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane. Patrito N; McLachlan JM; Faria SN; Chan J; Norton PR Lab Chip; 2007 Dec; 7(12):1813-8. PubMed ID: 18030405 [TBL] [Abstract][Full Text] [Related]
5. Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices. Ciftlik AT; Gijs MA Lab Chip; 2012 Jan; 12(2):396-400. PubMed ID: 22134687 [TBL] [Abstract][Full Text] [Related]
6. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications. Schneider S; Gruner D; Richter A; Loskill P Lab Chip; 2021 May; 21(10):1866-1885. PubMed ID: 33949565 [TBL] [Abstract][Full Text] [Related]
7. Room-temperature intermediate layer bonding for microfluidic devices. Bart J; Tiggelaar R; Yang M; Schlautmann S; Zuilhof H; Gardeniers H Lab Chip; 2009 Dec; 9(24):3481-8. PubMed ID: 20024026 [TBL] [Abstract][Full Text] [Related]
8. Chemically robust succinimide-group-assisted irreversible bonding of poly(dimethylsiloxane)-thermoplastic microfluidic devices at room temperature. Sivakumar R; Lee NY Analyst; 2020 Oct; 145(21):6887-6894. PubMed ID: 32820755 [TBL] [Abstract][Full Text] [Related]
10. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Länge K; Blaess G; Voigt A; Götzen R; Rapp M Biosens Bioelectron; 2006 Aug; 22(2):227-32. PubMed ID: 16458497 [TBL] [Abstract][Full Text] [Related]
11. Heat and pressure-resistant room temperature irreversible sealing of hybrid PDMS-thermoplastic microfluidic devices Sivakumar R; Trinh KTL; Lee NY RSC Adv; 2020 Apr; 10(28):16502-16509. PubMed ID: 35498866 [TBL] [Abstract][Full Text] [Related]
12. A Preliminary Experimental Study of Polydimethylsiloxane (PDMS)-To-PDMS Bonding Using Oxygen Plasma Treatment Incorporating Isopropyl Alcohol. Tony A; Badea I; Yang C; Liu Y; Wang K; Yang SM; Zhang W Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850290 [TBL] [Abstract][Full Text] [Related]
13. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip. Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209 [TBL] [Abstract][Full Text] [Related]
14. Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Sunkara V; Park DK; Hwang H; Chantiwas R; Soper SA; Cho YK Lab Chip; 2011 Mar; 11(5):962-5. PubMed ID: 21152492 [TBL] [Abstract][Full Text] [Related]
15. Rapid-release reversible bonding of PMMA-based microfluidic devices with PBMA coating. Li Y; Xu F; Liu J; Zhang Q; Fan Y Biomed Microdevices; 2023 Dec; 26(1):6. PubMed ID: 38141082 [TBL] [Abstract][Full Text] [Related]
16. Pre-enrichment-free detection of hepatocellular carcinoma-specific ctDNA via PDMS and MEMS-based microfluidic sensor. Çağlayan Arslan Z; Okan M; Külah H Mikrochim Acta; 2024 Apr; 191(5):229. PubMed ID: 38565645 [TBL] [Abstract][Full Text] [Related]
17. Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry. Atkinson N; Morhart TA; Wells G; Flaman GT; Petro E; Read S; Rosendahl SM; Burgess IJ; Achenbach S Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514546 [TBL] [Abstract][Full Text] [Related]
18. Desktop aligner for fabrication of multilayer microfluidic devices. Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409 [TBL] [Abstract][Full Text] [Related]
19. High adhesion strength and hybrid irreversible/reversible full-PDMS microfluidic chips. Shiroma LS; Oliveira AF; Lobo-Júnior EO; Coltro WKT; Gobbi AL; de La Torre LG; Lima RS Anal Chim Acta; 2017 Jan; 951():116-123. PubMed ID: 27998479 [TBL] [Abstract][Full Text] [Related]
20. Acoustic wave based MEMS devices for biosensing applications. Voiculescu I; Nordin AN Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]