These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 35630247)

  • 1. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration.
    Carotenuto F; Politi S; Ul Haq A; De Matteis F; Tamburri E; Terranova ML; Teodori L; Pasquo A; Di Nardo P
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Biomaterials for Regeneration.
    Wei G; Ma PX
    Adv Funct Mater; 2008 Nov; 18(22):3566-3582. PubMed ID: 19946357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration.
    Tupone MG; d'Angelo M; Castelli V; Catanesi M; Benedetti E; Cimini A
    Front Bioeng Biotechnol; 2021; 9():639765. PubMed ID: 33816451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications.
    Kumar P; Saini M; Dehiya BS; Sindhu A; Kumar V; Kumar R; Lamberti L; Pruncu CI; Thakur R
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33066127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment.
    Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S
    Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration.
    Qu T; Jing J; Jiang Y; Taylor RJ; Feng JQ; Geiger B; Liu X
    Tissue Eng Part A; 2014 Sep; 20(17-18):2422-33. PubMed ID: 24593189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling of extracellular matrices for tissue regeneration and therapeutics.
    Chua ILS; Kim HW; Lee JH
    Tissue Eng Regen Med; 2016 Feb; 13(1):1-12. PubMed ID: 30603379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration.
    Zhu L; Luo D; Liu Y
    Int J Oral Sci; 2020 Feb; 12(1):6. PubMed ID: 32024822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering.
    Khanna A; Zamani M; Huang NF
    J Cardiovasc Dev Dis; 2021 Oct; 8(11):. PubMed ID: 34821690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Fabrication: Convergence of 3D Bioprinting and Nano-Biomaterials in Tissue Engineering and Regenerative Medicine.
    Di Marzio N; Eglin D; Serra T; Moroni L
    Front Bioeng Biotechnol; 2020; 8():326. PubMed ID: 32373603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An update on the Application of Nanotechnology in Bone Tissue Engineering.
    Griffin MF; Kalaskar DM; Seifalian A; Butler PE
    Open Orthop J; 2016; 10():836-848. PubMed ID: 28217209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in biomimetic modification of materials for oromaxillofacial bone regeneration and dental implant].
    Jiang XQ
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2021 Apr; 39(2):123-128. PubMed ID: 33834665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications.
    Chandika P; Heo SY; Kim TH; Oh GW; Kim GH; Kim MS; Jung WK
    Int J Biol Macromol; 2020 Dec; 164():2329-2357. PubMed ID: 32795569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current status of three-dimensional printing inks for soft tissue regeneration.
    Kim JE; Kim SH; Jung Y
    Tissue Eng Regen Med; 2016 Dec; 13(6):636-646. PubMed ID: 30603445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations.
    Kim H; Yang GH; Choi CH; Cho YS; Kim G
    Int J Biol Macromol; 2018 Dec; 120(Pt A):119-127. PubMed ID: 30056041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of nanomaterials for bone repair and regeneration.
    McMahon RE; Wang L; Skoracki R; Mathur AB
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):387-97. PubMed ID: 23281143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.