These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35630285)
1. Corrosion of an AZ31B Magnesium Alloy by Sulfate-Reducing Prokaryotes in a Mudflat Environment. Lan X; Zhang J; Wang Z; Zhang R; Sand W; Zhang L; Duan J; Zhu Q; Hou B Microorganisms; 2022 Apr; 10(5):. PubMed ID: 35630285 [TBL] [Abstract][Full Text] [Related]
2. Effects of Inorganic Metabolites of Sulphate-Reducing Bacteria on the Corrosion of AZ31B and AZ63B Magnesium Alloy in 3.5 wt.% NaCl Solution. Li J; Liu X; Zhang J; Zhang R; Wang M; Sand W; Duan J; Zhu Q; Zhai S; Hou B Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329663 [TBL] [Abstract][Full Text] [Related]
3. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy. Zhu X; Liu Y; Wang Q; Liu J Materials (Basel); 2014 Oct; 7(10):7118-7129. PubMed ID: 28788236 [TBL] [Abstract][Full Text] [Related]
4. The influence of Li X; Ma B; Liu B; Cao J; Li L; Xu Z iScience; 2024 Sep; 27(9):110688. PubMed ID: 39252962 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean. Yang L; Liu C; Wang Y; Wang X; Gao H Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793361 [TBL] [Abstract][Full Text] [Related]
6. The influence of SRB on corrosion behavior of Cu-based medium-entropy alloy coating sprayed by HVOF. Cheng J; Wu Y; Duan J; Polat G; Hong S; Cheng J Bioelectrochemistry; 2024 Apr; 156():108633. PubMed ID: 38160511 [TBL] [Abstract][Full Text] [Related]
7. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification. Hou X; Qin H; Gao H; Mankoci S; Zhang R; Zhou X; Ren Z; Doll GL; Martini A; Sahai N; Dong Y; Ye C Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1061-1071. PubMed ID: 28575941 [TBL] [Abstract][Full Text] [Related]
8. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Xin Y; Huo K; Tao H; Tang G; Chu PK Acta Biomater; 2008 Nov; 4(6):2008-15. PubMed ID: 18571486 [TBL] [Abstract][Full Text] [Related]
9. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material. Wu TC; Ho YH; Joshi SS; Rajamure RS; Dahotre NB Lasers Med Sci; 2017 May; 32(4):797-803. PubMed ID: 28251395 [TBL] [Abstract][Full Text] [Related]
10. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Tan L; Wang Q; Lin X; Wan P; Zhang G; Zhang Q; Yang K Acta Biomater; 2014 May; 10(5):2333-40. PubMed ID: 24361529 [TBL] [Abstract][Full Text] [Related]
11. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion. Jang Y; Collins B; Sankar J; Yun Y Acta Biomater; 2013 Nov; 9(10):8761-70. PubMed ID: 23535231 [TBL] [Abstract][Full Text] [Related]
12. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model. Sun W; Zhang G; Tan L; Yang K; Ai H Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():506-11. PubMed ID: 27040245 [TBL] [Abstract][Full Text] [Related]
13. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy. Harandi SE; Banerjee PC; Easton CD; Singh Raman RK Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():335-345. PubMed ID: 28866172 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. Gao F; Hu Y; Gong Z; Liu T; Gong T; Liu S; Zhang C; Quan L; Kaveendran B; Pan C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109947. PubMed ID: 31499970 [TBL] [Abstract][Full Text] [Related]
15. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Ho YH; Joshi SS; Wu TC; Hung CM; Ho NJ; Dahotre NB Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110632. PubMed ID: 32228958 [TBL] [Abstract][Full Text] [Related]
16. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. Ibrahim H; Klarner AD; Poorganji B; Dean D; Luo AA; Elahinia M J Mech Behav Biomed Mater; 2017 May; 69():203-212. PubMed ID: 28088072 [TBL] [Abstract][Full Text] [Related]
17. Gao X; Dai CY; Jia Q; Zhai C; Shi H; Yang Y; Zhao BC; Cai H; Lee ES; Jiang HB Scanning; 2021; 2021():5530788. PubMed ID: 34025899 [TBL] [Abstract][Full Text] [Related]
18. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Törne K; Örnberg A; Weissenrieder J Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765 [TBL] [Abstract][Full Text] [Related]
19. Temporary Inhibition of the Corrosion of AZ31B Magnesium Alloy by Formation of Kang Y; Li L; Li S; Zhou X; Xia K; Liu C; Qu Q Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30744166 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. Ur Rahman Z; Pompa L; Haider W J Mater Sci Mater Med; 2015 Aug; 26(8):217. PubMed ID: 26216551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]