BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35630595)

  • 1. A Comprehensive Review of Lithium-Ion Capacitor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications.
    Karimi D; Behi H; Van Mierlo J; Berecibar M
    Molecules; 2022 May; 27(10):. PubMed ID: 35630595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid thermal management system for high power lithium-ion capacitors combining heat pipe with phase change materials.
    Karimi D; Hosen MS; Behi H; Khaleghi S; Akbarzadeh M; Van Mierlo J; Berecibar M
    Heliyon; 2021 Aug; 7(8):e07773. PubMed ID: 34430748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Li-ion capacitors through dual wet chemical prelithiation.
    Lai KL; Gao LY; Chang JK; Su YS
    J Colloid Interface Sci; 2024 Jun; 663():685-696. PubMed ID: 38430838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.
    Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS
    Small; 2017 Feb; 13(6):. PubMed ID: 27893190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High performance Li-ion capacitor fabricated with dual graphene-based materials.
    Sui D; Wu M; Liu Y; Yang Y; Zhang H; Ma Y; Zhang L; Chen Y
    Nanotechnology; 2021 Jan; 32(1):015403. PubMed ID: 32947263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binder-free boron-doped Si nanowires toward the enhancement of lithium-ion capacitor.
    Li M; Song S; Li Y; Jevasuwan W; Fukata N; Bae J
    Nanotechnology; 2023 Jun; 34(35):. PubMed ID: 37207636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review.
    Duan Y; Li C; Ye Z; Li H; Yang Y; Sui D; Lu Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnCO
    Natarajan S; Akshay M; Aravindan V
    Small; 2023 Apr; 19(17):e2206226. PubMed ID: 36693780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Li-Ion and Na-Ion Capacitors Based on a Spinel Li
    Akshay M; Jyothilakshmi S; Lee YS; Aravindan V
    Small; 2024 Apr; 20(15):e2307248. PubMed ID: 37994396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors.
    Halim M; Liu G; Ardhi REA; Hudaya C; Wijaya O; Lee SH; Kim AY; Lee JK
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20566-20576. PubMed ID: 28557417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coprecipitation Reaction System Synthesis and Lithium-Ion Capacitor Energy Storage Application of the Porous Structural Bimetallic Sulfide CoMoS
    Wang YK; Zhang WB; Zhao Y; Li K; Kong LB
    ACS Omega; 2018 Aug; 3(8):8803-8812. PubMed ID: 31459013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Safer High-Energy Lithium-Ion Capacitor Using Fast-Charging and Stable ω-Li
    Lan X; Liu X; Meng T; Yang S; Shen Y; Hu X
    Small Methods; 2023 Apr; 7(4):e2201290. PubMed ID: 36811324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes.
    Yin H; Tang J; Zhang K; Lin S; Xu G; Qin LC
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na
    Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics.
    Xu X; Zhang J; Zhang Z; Lu G; Cao W; Wang N; Xia Y; Feng Q; Qiao S
    Nanomicro Lett; 2024 Feb; 16(1):116. PubMed ID: 38358567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Class of High-Energy, High-Power Capacitive Devices Enabled by Stabilized Lithium Metal Anodes.
    Shaibani M; Abedin MJ; Sharifzadeh Mirshekarloo M; Griffith JC; Singh R; Aitchison P; Hill MR; Majumder M
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37454-37466. PubMed ID: 37506322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review.
    Sui D; Chang M; Peng Z; Li C; He X; Yang Y; Liu Y; Lu Y
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from -60 to +55 °C.
    Yin Y; Fang Z; Chen J; Peng Y; Zhu L; Wang C; Wang Y; Dong X; Xia Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45630-45638. PubMed ID: 34541855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.