BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 35630596)

  • 1.
    Kajszczak D; Kowalska-Baron A; Sosnowska D; Podsędek A
    Molecules; 2022 May; 27(10):. PubMed ID: 35630596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycoside Hydrolases and Non-Enzymatic Glycation Inhibitory Potential of
    Kajszczak D; Kowalska-Baron A; Podsędek A
    Antioxidants (Basel); 2021 Jun; 10(6):. PubMed ID: 34205673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of
    Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase.
    Adisakwattana S; Lerdsuwankij O; Poputtachai U; Minipun A; Suparpprom C
    Plant Foods Hum Nutr; 2011 Jun; 66(2):143-8. PubMed ID: 21538147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Chemical Composition and Antioxidant Capacity of Fruit, Flower and Bark of Viburnum opulus.
    Polka D; Podsędek A; Koziołkiewicz M
    Plant Foods Hum Nutr; 2019 Sep; 74(3):436-442. PubMed ID: 31321622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity.
    Yilmazer-Musa M; Griffith AM; Michels AJ; Schneider E; Frei B
    J Agric Food Chem; 2012 Sep; 60(36):8924-9. PubMed ID: 22697360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of flavonoids from banana pseudostem and flower (quercetin and catechin) as potent inhibitors of α-glucosidase: An in silico perspective.
    Patil SM; Martiz RM; Ramu R; Shirahatti PS; Prakash A; Kumar BRP; Kumar N
    J Biomol Struct Dyn; 2022; 40(23):12491-12505. PubMed ID: 34488558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans.
    Moser S; Aragon I; Furrer A; Van Klinken JW; Kaczmarczyk M; Lee BH; George J; Hamaker BR; Mattes R; Ferruzzi MG
    Nutr Res; 2018 Apr; 52():57-70. PubMed ID: 29525611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoids and Phenolic Acids Content in Cultivation and Wild Collection of European Cranberry Bush
    Goławska S; Łukasik I; Chojnacki AA; Chrzanowski G
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme inhibitory activities of phenolic compounds in pecan and the effect on starch digestion.
    Feng J; Kong F
    Int J Biol Macromol; 2022 Nov; 220():117-123. PubMed ID: 35963356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds.
    Kalita D; Holm DG; LaBarbera DV; Petrash JM; Jayanty SS
    PLoS One; 2018; 13(1):e0191025. PubMed ID: 29370193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five New Phenolic Glycosides from Viburnum luzonicum.
    Chen J; Zhao M; Zhou H; Tang Y; Ji W; Shao J; Zhao C; Zhao C
    Chem Biodivers; 2023 Apr; 20(4):e202300246. PubMed ID: 36896855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase.
    Adisakwattana S; Ruengsamran T; Kampa P; Sompong W
    BMC Complement Altern Med; 2012 Jul; 12():110. PubMed ID: 22849553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fijian medicinal plants and their role in the prevention of Type 2 diabetes mellitus.
    Mala P; Khan GA; Gopalan R; Gedefaw D; Soapi K
    Biosci Rep; 2022 Nov; 42(11):. PubMed ID: 36149310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concord and Niagara Grape Juice and Their Phenolics Modify Intestinal Glucose Transport in a Coupled in Vitro Digestion/Caco-2 Human Intestinal Model.
    Moser S; Lim J; Chegeni M; Wightman JD; Hamaker BR; Ferruzzi MG
    Nutrients; 2016 Jul; 8(7):. PubMed ID: 27399765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory activity of
    Purnomo Y; Makdasari J; Fatahillah FI
    J Basic Clin Physiol Pharmacol; 2021 Jun; 32(4):889-894. PubMed ID: 34214371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities.
    Xiong J; Grace MH; Esposito D; Komarnytsky S; Wang F; Lila MA
    Chin J Nat Med; 2017 Nov; 15(11):816-824. PubMed ID: 29329608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ficus racemosa stem bark on the activities of carbohydrate hydrolyzing enzymes: an in vitro study.
    Ahmed F; Urooj A
    Pharm Biol; 2010 May; 48(5):518-23. PubMed ID: 20645793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Simulated In Vitro Digestion on Biological Activity of
    Pietrzyk N; Zakłos-Szyda M; Redzynia M; Podsędek A
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity.
    Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K
    J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.