BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35630597)

  • 21. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons.
    Carmichael AB; Wong LL
    Eur J Biochem; 2001 May; 268(10):3117-25. PubMed ID: 11358532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin.
    Fetherolf MM; Levy-Booth DJ; Navas LE; Liu J; Grigg JC; Wilson A; Katahira R; Beckham GT; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25771-25778. PubMed ID: 32989155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-specificity synthesis of novel monomers by remodeled alcohol hydroxylase.
    Zheng Y; Li L; Liu Q; Zhang H; Cao Y; Xian M; Liu H
    BMC Biotechnol; 2016 Aug; 16(1):61. PubMed ID: 27557638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancements and Perspectives toward Lignin Valorization via O-Demethylation.
    Wu X; Smet E; Brandi F; Raikwar D; Zhang Z; Maes BUW; Sels BF
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202317257. PubMed ID: 38128012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives.
    Pompei S; Grimm C; Schiller C; Schober L; Kroutil W
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):16906-16910. PubMed ID: 34057803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel catalytic potential of a hyperthermostable mono‑copper oxidase (LPMO-AOAA17) for the oxidation of lignin monomers and depolymerisation of lignin dimer in aqueous media.
    Bhatia S; Yadav SK
    Int J Biol Macromol; 2021 Sep; 186():563-573. PubMed ID: 34273339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytochromes P450 in the biocatalytic valorization of lignin.
    Wolf ME; Hinchen DJ; DuBois JL; McGeehan JE; Eltis LD
    Curr Opin Biotechnol; 2022 Feb; 73():43-50. PubMed ID: 34303185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Cytochrome P450BM3 Enzymes for Direct Nitration of Unsaturated Hydrocarbons.
    Wang X; Lin X; Jiang Y; Qin X; Ma N; Yao F; Dong S; Liu C; Feng Y; Jin L; Xian M; Cong Z
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217678. PubMed ID: 36660956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.
    Cai Y; Bhuiya MW; Shanklin J; Liu CJ
    J Biol Chem; 2015 Oct; 290(44):26715-24. PubMed ID: 26378240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering P450 Peroxygenase to Catalyze Highly Enantioselective Epoxidation of cis-β-Methylstyrenes.
    Zhang C; Liu PX; Huang LY; Wei SP; Wang L; Yang SY; Yu XQ; Pu L; Wang Q
    Chemistry; 2016 Jul; 22(31):10969-75. PubMed ID: 27362319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase.
    Kinne M; Poraj-Kobielska M; Ralph SA; Ullrich R; Hofrichter M; Hammel KE
    J Biol Chem; 2009 Oct; 284(43):29343-9. PubMed ID: 19713216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway.
    Jansen F; Gillessen B; Mueller F; Commandeur U; Fischer R; Kreuzaler F
    Biotechnol Appl Biochem; 2014; 61(6):646-54. PubMed ID: 24575890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between CYP2C9 and CYP2C19 in reconstituted binary systems influence their catalytic activity: possible rationale for the inability of CYP2C19 to catalyze methoxychlor demethylation in human liver microsomes.
    Hazai E; Kupfer D
    Drug Metab Dispos; 2005 Jan; 33(1):157-64. PubMed ID: 15486075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of [13C]- and [14C]-labeled phenolic humus and lignin monomers.
    Ji R; Chen Z; Corvini PF; Kappler A; Brune A; Haider K; Schäffer A
    Chemosphere; 2005 Sep; 60(9):1169-81. PubMed ID: 16018886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical.
    Rashid GMM; Zhang X; Wilkinson RC; Fülöp V; Cottyn B; Baumberger S; Bugg TDH
    ACS Chem Biol; 2018 Oct; 13(10):2920-2929. PubMed ID: 30247873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Site Mutation Induces Water-Mediated Promiscuity in Lignin Breaking Cytochrome P450
    Singh W; Santos SFG; James P; Black GW; Huang M; Dubey KD
    ACS Omega; 2022 Jun; 7(24):21109-21118. PubMed ID: 35755387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.