These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35630860)

  • 1. An Electrochromic Ag-Decorated WO
    Qu S; Guan J; Cai D; Wang Q; Wang X; Song W; Ji W
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the secrets behind photocurrents are revealed in Ag-TiO
    Liao XL; Ran X; Wang D; Bian SD; Liang ZH; Xiao YH; Wu XW; Zhou JZ; Wu DY; Tian ZQ
    J Colloid Interface Sci; 2024 Jun; 674():766-777. PubMed ID: 38955008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights of Charge Transfer at Metal/Semiconductor Interfaces for Hot-Electron Generation Studied by Surface-Enhanced Raman Spectroscopy.
    Guan J; Wu S; Li L; Wang X; Ji W; Ozaki Y
    J Phys Chem Lett; 2022 Apr; 13(16):3571-3578. PubMed ID: 35426671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon catalytic PATP coupling reaction on Ag-NPs/graphite studied
    Zhong H; Chen J; Chen J; Tao R; Jiang J; Hu Y; Xu J; Zhang T; Liao J
    Phys Chem Chem Phys; 2020 Oct; 22(41):23482-23490. PubMed ID: 32820299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Electrochemistry on Single Nanoparticles with Surface-Enhanced Raman Scattering Spectroscopy and Microscopy.
    Hemmer JV; Joshi PB; Wilson AJ
    J Vis Exp; 2023 May; (195):. PubMed ID: 37246884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Surface-Enhanced Raman Scattering Study on Photocatalysis of PATP When Adsorbed on Ag/TiO2 Nanotubes].
    Zhong XL; Han XX; Ruan WD; Yang XW; Zhong XL; Han XX; Ruan WD; Yang XW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1740-4. PubMed ID: 30052383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-Transfer Resonance and Surface Defect-Dominated WO
    Jiang L; Hu Y; Zhang H; Luo X; Yuan R; Yang X
    Anal Chem; 2022 May; 94(19):6967-6975. PubMed ID: 35289177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast charge transfer in mixed-dimensional WO
    Lv Q; Tan J; Wang Z; Gu P; Liu H; Yu L; Wei Y; Gan L; Liu B; Li J; Kang F; Cheng HM; Xiong Q; Lv R
    Nat Commun; 2023 May; 14(1):2717. PubMed ID: 37169769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile strategy for obtaining fresh Ag as SERS active substrates.
    Gan Z; Zhao A; Zhang M; Wang D; Tao W; Guo H; Li D; Li M; Gao Q
    J Colloid Interface Sci; 2012 Jan; 366(1):23-27. PubMed ID: 21999955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A P/N type silicon semiconductor loaded with silver nanoparticles used as a SERS substrate to selectively drive the coupling reaction induced by surface plasmons.
    Zhao Y; Zhang Q; Ma L; Song P; Xia L
    Nanoscale Adv; 2020 Aug; 2(8):3460-3466. PubMed ID: 36134259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precisely Controllable Core-Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions.
    Jin J; Zhu S; Song Y; Zhao H; Zhang Z; Guo Y; Li J; Song W; Yang B; Zhao B
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27956-27965. PubMed ID: 27673572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Redox-Reaction-Driven Growth of Ag Nanoparticles on Co(OH)
    Fan T; Cai L; Huang Z; Tang H; Zhang L; Li Z
    Inorg Chem; 2023 Jul; 62(30):11775-11784. PubMed ID: 37463408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Visible Light Absorption and Abundant Hotspots in Au-Decorated WO
    Zou JW; Li ZD; Kang HS; Zhao WQ; Liu JC; Chen YL; Ma L; Hou HY; Ding SJ
    ACS Omega; 2021 Oct; 6(42):28347-28355. PubMed ID: 34723031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of nanocellulose-based Cu
    Luo Y; Xing L; Hu C; Zhang W; Lin X; Gu J
    Int J Biol Macromol; 2022 Apr; 205():366-375. PubMed ID: 35192906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO(3-x) heterostructure nanorods by variation of the Ag size.
    Ghosh S; Saha M; Paul S; De SK
    Nanoscale; 2015 Nov; 7(43):18284-98. PubMed ID: 26486253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering.
    Fan X; Wei P; Li G; Li M; Lan L; Hao Q; Qiu T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51618-51627. PubMed ID: 34674528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photovoltaic cells as a highly efficient system for biomedical and electrochemical surface-enhanced Raman spectroscopy analysis.
    Niciński K; Witkowska E; Korsak D; Noworyta K; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    RSC Adv; 2019 Jan; 9(2):576-591. PubMed ID: 35517626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of aminothiophenol as an indicator for the analysis of silver nanoparticles in consumer products by surface-enhanced Raman spectroscopy.
    Nguyen TH; Zhou P; Mustapha A; Lin M
    Analyst; 2016 Sep; 141(18):5382-9. PubMed ID: 27349813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.