These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35630861)

  • 1. Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison.
    Tamersit K; Madan J; Kouzou A; Pandey R; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy of Electrostatic and Chemical Doping to Improve the Performance of Junctionless Carbon Nanotube Tunneling Field-Effect Transistors: Ultrascaling, Energy-Efficiency, and High Switching Performance.
    Tamersit K; Kouzou A; Bourouba H; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatically Doped Junctionless Graphene Nanoribbon Tunnel Field-Effect Transistor for High-Performance Gas Sensing Applications: Leveraging Doping Gates for Multi-Gas Detection.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38276738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging negative capacitance ferroelectric materials for performance boosting of sub-10 nm graphene nanoribbon field-effect transistors: a quantum simulation study.
    Tamersit K; Moaiyeri MH; Jooq MKQ
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35947928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jun; 14(11):. PubMed ID: 38869587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices.
    Poljak M; Matić M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Analysis of an α-Graphyne Nano-Field Effect Transistor.
    Khan H; Islam MM; Roya RI; Azad SN; Alam M
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Parametric Study of Armchair Graphene Nanoribbon Field Effect Transistor by Non-Equilibrium Green's Function Method.
    Hur JH
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4832-4838. PubMed ID: 32126662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study.
    Yamacli S; Avci M
    Physica B Condens Matter; 2023 Jan; 648():414438. PubMed ID: 36281340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive and fast graphene nanoribbon/CsPbBr
    Liu X; Kuang W; Ni H; Tao Z; Huang Q; Chen J; Liu Q; Chang J; Lei W
    Nanoscale; 2018 May; 10(21):10182-10189. PubMed ID: 29786723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional MX2 Semiconductors for Sub-5 nm Junctionless Field Effect Transistors.
    Peng B; Zheng W; Qin J; Zhang W
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29543770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact effects in graphene nanoribbon transistors.
    Liang G; Neophytou N; Lundstrom MS; Nikonov DE
    Nano Lett; 2008 Jul; 8(7):1819-24. PubMed ID: 18558785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of graphene nanoribbon devices.
    Guo J
    Nanoscale; 2012 Sep; 4(18):5538-48. PubMed ID: 22875475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap scaling and negative differential resistance behavior of zigzag phosphorene antidot nanoribbons (ZPANRs).
    Carmel S; Pon A; Meenakshisundaram N; Ramesh R; Bhattacharyya A
    Phys Chem Chem Phys; 2018 May; 20(21):14855-14863. PubMed ID: 29781502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random dopant fluctuations and statistical variability in n-channel junctionless FETs.
    Akhavan ND; Umana-Membreno GA; Gu R; Antoszewski J; Faraone L
    Nanotechnology; 2018 Jan; 29(2):025203. PubMed ID: 29176060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene.
    Gao G; Li Z; Chen M; Xie Y; Wang Y
    J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gate electrostatics and quantum capacitance of graphene nanoribbons.
    Guo J; Yoon Y; Ouyang Y
    Nano Lett; 2007 Jul; 7(7):1935-40. PubMed ID: 17552571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The computational design of junctions between carbon nanotubes and graphene nanoribbons.
    Li YF; Li BR; Zhang HL
    Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study.
    Sun N; Wang M; Quhe R; Liu Y; Liu W; Guo Z; Ye H
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.