These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35630889)

  • 1. Polymorphic Phase Transformations in Nanocrystalline Ag
    Valeeva AA; Sadovnikov SI; Gusev AI
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct TEM observation of the "acanthite α-Ag
    Sadovnikov SI; Gerasimov EY
    Nanoscale Adv; 2019 Apr; 1(4):1581-1588. PubMed ID: 36132590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag2S and argentite β-Ag2S.
    Sadovnikov SI; Gusev AI; Chukin AV; Rempel AA
    Phys Chem Chem Phys; 2016 Feb; 18(6):4617-26. PubMed ID: 26796061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic properties of superionic cubic silver sulfide β-Ag
    Sadovnikov SI; Gusev AI
    Phys Chem Chem Phys; 2021 Feb; 23(4):2914-2922. PubMed ID: 33475666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Temperature Predicted Structures of Ag
    Sadovnikov SI; Kostenko MG; Gusev AI; Lukoyanov AV
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in situ high-temperature scanning electron microscopy study of acanthite-argentite phase transformation in nanocrystalline silver sulfide powder.
    Sadovnikov SI; Gusev AI; Rempel AA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20495-501. PubMed ID: 26206668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag
    Sadovnikov SI; Gusev AI; Chukin AV; Rempel AA
    Phys Chem Chem Phys; 2018 Jan; 20(5):3847-3850. PubMed ID: 29362752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonstoichiometry of nanocrystalline monoclinic silver sulfide.
    Sadovnikov SI; Gusev AI; Rempel AA
    Phys Chem Chem Phys; 2015 May; 17(19):12466-71. PubMed ID: 25917058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformations of Ag
    Khan AU; Xu Z; Qian X; Hong A; Tang Q; Zeng T; Kah M; Li L
    J Hazard Mater; 2021 Jan; 401():123406. PubMed ID: 32653797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper(I) Promotes Silver Sulfide Dissolution and Increases Silver Phytoavailability.
    Huang Y; Liu C; Cui P; Dang F; Li M; Xing B; Zhou D
    Environ Sci Technol; 2020 May; 54(9):5589-5597. PubMed ID: 32275397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation Analysis of Ag
    Zhou XX; Jiang LW; Wang DJ; He S; Li CJ; Yan B
    Anal Chem; 2020 Apr; 92(7):4765-4770. PubMed ID: 32075371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Spectral Analysis of Head-to-Tail Shaped Ag2S/ZnS Near-Infrared Quantum Dots with Manganese Dopant.
    Zhao F; Kim J
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5083-6. PubMed ID: 26373083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of Various One-Dimensional ZnS/MnS Heteronanostructures with Varied Diameters via the Multistep Solution-Solid-Solid Growth Method.
    Zhang Y; Xue Y; Qi K; Ru Z; Cai J; Chen W
    Inorg Chem; 2022 Jan; 61(2):1152-1158. PubMed ID: 34964614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-phase catalytic synthesis, characterization and growth kinetics of Ag2S-CdS matchstick-like heteronanostructures.
    Wang J; Feng H; Chen K; Fan W; Yang Q
    Dalton Trans; 2014 Mar; 43(10):3990-8. PubMed ID: 24452178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-Responsive Ascorbic Acid-Modified Ag
    Yang LT; Wang WJ; Huang WT; Wang LC; Hsu MC; Kan CD; Huang CY; Wong TW; Li WP
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):12018-12032. PubMed ID: 38394675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the protective effects of reactive sulfide on the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss).
    Mann RM; Ernste MJ; Bell RA; Kramer JR; Wood CM
    Environ Toxicol Chem; 2004 May; 23(5):1204-10. PubMed ID: 15180371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS-Ag
    Yang H; Chen H; Cao L; Wang H; Deng W; Tan Y; Xie Q
    Talanta; 2020 May; 212():120797. PubMed ID: 32113559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment.
    Wei WJ; Yang Y; Li XY; Huang P; Wang Q; Yang PJ
    Talanta; 2022 Mar; 239():123117. PubMed ID: 34890942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A voltammetric investigation of the sulfidation of silver nanoparticles by zinc sulfide.
    Lieb HC; Nguyen BD; Ramsayer ER; Mullaugh KM
    Sci Total Environ; 2020 Jun; 720():137685. PubMed ID: 32325601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermomechanical, electronic and thermodynamic properties of ZnS cubic polymorphs: an ab initio investigation on the zinc-blende-rock-salt phase transition.
    Ulian G; Valdrè G
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Dec; 75(Pt 6):1042-1059. PubMed ID: 32830684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.