These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35630972)

  • 1. Co-W Barrier Layers for Metallization of Copper Interconnects: Thermal Performance Analysis.
    Oliveira BMC; Santos RF; Piedade AP; Ferreira PJ; Vieira MF
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seedless Cu Electroplating on Ru-W Thin Films for Metallisation of Advanced Interconnects.
    Santos RF; Oliveira BMC; Savaris LCG; Ferreira PJ; Vieira MF
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous Ta
    An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW
    Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seedless Cu Electroplating on Co-W Thin Films in Low pH Electrolyte: Early Stages of Formation.
    Santos RF; Oliveira BMC; Chícharo A; Alpuim P; Ferreira PJ; Simões S; Viana F; Vieira MF
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene as an atomically thin barrier to Cu diffusion into Si.
    Hong J; Lee S; Lee S; Han H; Mahata C; Yeon HW; Koo B; Kim SI; Nam T; Byun K; Min BW; Kim YW; Kim H; Joo YC; Lee T
    Nanoscale; 2014 Jul; 6(13):7503-11. PubMed ID: 24883431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si.
    Hsieh SH; Chen WJ; Chien CM
    Nanomaterials (Basel); 2015 Nov; 5(4):1840-1852. PubMed ID: 28347099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of atomic layer deposited Ru layer on Si and TaN/Si for barrier application of Cu interconnection.
    Shin DC; Kim MR; Lee JH; Choi BH; Lee HK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5631-7. PubMed ID: 22966623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects.
    Majumder P; Takoudis C
    Nanotechnology; 2008 May; 19(20):205202. PubMed ID: 21825734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroless Nickel Deposition for Front Side Metallization of Silicon Solar Cells.
    Hsieh SH; Hsieh JM; Chen WJ; Chuang CC
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28805724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of post-growth annealing of Cu(hfac)
    Puydinger Dos Santos MV; Szkudlarek A; Rydosz A; Guerra-Nuñez C; Béron F; Pirota KR; Moshkalev S; Diniz JA; Utke I
    Beilstein J Nanotechnol; 2018; 9():91-101. PubMed ID: 29441254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Formation of a Ru/ZnO Multifunctional Bilayer for the Next-Generation Interconnect Technology via Area-Selective Atomic Layer Deposition.
    Mori Y; Cheon T; Kotsugi Y; Kim YH; Park Y; Ansari MZ; Mohapatra D; Jang Y; Bae JS; Kwon W; Kim G; Park YB; Lee HB; Song W; Kim SH
    Small; 2023 Aug; 19(34):e2300290. PubMed ID: 37127866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect.
    An BS; Kwon Y; Oh JS; Lee C; Choi S; Kim H; Lee M; Pae S; Yang CW
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3104-3113. PubMed ID: 31845581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Properties of Cu Thin Films on Ru Depending on the ALD Temperature.
    Yoon HC; Shin JH; Park HS; Suh SJ
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1601-4. PubMed ID: 26353698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Barrier Layer of Cu Interconnects.
    Li Z; Tian Y; Teng C; Cao H
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.
    Zhao JT; Zhang JY; Hou ZQ; Wu K; Feng XB; Liu G; Sun J
    Nanotechnology; 2018 May; 29(19):195705. PubMed ID: 29469813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Ru passivation and doping on the barrier and seed layer properties of Ru-modified TaN for copper interconnects.
    Kondati Natarajan S; Nies CL; Nolan M
    J Chem Phys; 2020 Apr; 152(14):144701. PubMed ID: 32295379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Ultrasonic Agitation on the Seedless Growth of Cu on Ru-W Thin Films.
    Santos RF; Oliveira BMC; Ferreira PJ; Vieira MF
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion Barrier Performance of AlCrTaTiZr/AlCrTaTiZr-N High-Entropy Alloy Films for Cu/Si Connect System.
    Jiang C; Li R; Wang X; Shang H; Zhang Y; Liaw PK
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33286008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.
    Feng J; Gong X; Lou X; Gordon RG
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10914-10920. PubMed ID: 28266209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroless nickel alloy deposition on SiO2 for application as a diffusion barrier and seed layer in 3D copper interconnect technology.
    Kim TY; Son HJ; Lim SK; Song YI; Park HS; Suh SJ
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9515-24. PubMed ID: 25971093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.