These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35630982)

  • 21. Recent Advances in Barrier Layer of Cu Interconnects.
    Li Z; Tian Y; Teng C; Cao H
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of encapsulation on electronic transport properties of nanoscale Cu(111) films.
    Shinde PP; Adiga SP; Pandian S; Mayya KS; Shin HJ; Park S
    Sci Rep; 2019 Mar; 9(1):3488. PubMed ID: 30837632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-W Barrier Layers for Metallization of Copper Interconnects: Thermal Performance Analysis.
    Oliveira BMC; Santos RF; Piedade AP; Ferreira PJ; Vieira MF
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification and Characterization of Interfacial Bonding for Thermal Management of Ruthenium Interconnects in Next-Generation Very-Large-Scale Integration Circuits.
    Zhan T; Sahara K; Takeuchi H; Yokogawa R; Oda K; Jin Z; Deng S; Tomita M; Wu YJ; Xu Y; Matsuki T; Wang H; Song M; Guan S; Ogura A; Watanabe T
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7392-7404. PubMed ID: 35099170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seedless Cu Electroplating on Ru-W Thin Films for Metallisation of Advanced Interconnects.
    Santos RF; Oliveira BMC; Savaris LCG; Ferreira PJ; Vieira MF
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper nanowires as nanoscale interconnects: their stability, electrical transport, and mechanical properties.
    Xu WH; Wang L; Guo Z; Chen X; Liu J; Huang XJ
    ACS Nano; 2015 Jan; 9(1):241-50. PubMed ID: 25521157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust Co alloy design for Co interconnects using a self-forming barrier layer.
    Kim C; Kang G; Jung Y; Kim JY; Lee GB; Hong D; Lee Y; Hwang SG; Jung IH; Joo YC
    Sci Rep; 2022 Jul; 12(1):12291. PubMed ID: 35853980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternating-current induced thermal fatigue of gold interconnects with nanometer-scale thickness and width.
    Sun L; Ling X; Li X
    Rev Sci Instrum; 2011 Oct; 82(10):103903. PubMed ID: 22047308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature and Size Effect on the Electrical Properties of Monolayer Graphene based Interconnects for Next Generation MQCA based Nanoelectronics.
    Debroy S; Sivasubramani S; Vaidya G; Acharyya SG; Acharyya A
    Sci Rep; 2020 Apr; 10(1):6240. PubMed ID: 32277138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional measurement of line edge roughness in copper wires using electron tomography.
    Ercius P; Gignac LM; Hu CK; Muller DA
    Microsc Microanal; 2009 Jun; 15(3):244-50. PubMed ID: 19460181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanometer-thick copper films with low resistivity grown on 2D material surfaces.
    Liu YW; Zhang DJ; Tsai PC; Chiang CT; Tu WC; Lin SY
    Sci Rep; 2022 Feb; 12(1):1823. PubMed ID: 35110664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low Resistivity and High Breakdown Current Density of 10 nm Diameter van der Waals TaSe
    Empante TA; Martinez A; Wurch M; Zhu Y; Geremew AK; Yamaguchi K; Isarraraz M; Rumyantsev S; Reed EJ; Balandin AA; Bartels L
    Nano Lett; 2019 Jul; 19(7):4355-4361. PubMed ID: 31244229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of improved contact on reliability of sub-60 nm carbon nanotube vias.
    Vyas AA; Zhou C; Chai Y; Wang P; Yang CY
    Nanotechnology; 2016 Sep; 27(37):375202. PubMed ID: 27486701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of trench aspect ratio on microstructure variation in as-deposited and annealed damascene Cu interconnect lines.
    Mirpuri K; Szpunar J
    Micron; 2004; 35(7):575-87. PubMed ID: 15219904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene as an atomically thin barrier to Cu diffusion into Si.
    Hong J; Lee S; Lee S; Han H; Mahata C; Yeon HW; Koo B; Kim SI; Nam T; Byun K; Min BW; Kim YW; Kim H; Joo YC; Lee T
    Nanoscale; 2014 Jul; 6(13):7503-11. PubMed ID: 24883431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Essential role of enhanced surface electron-phonon interactions on the electrical transport of suspended polycrystalline gold nanofilms.
    Miao T; Li D; Shi S; Ji Z; Ma W; Zhang X; Zhong Q; Wang X
    RSC Adv; 2018 Jun; 8(37):20679-20685. PubMed ID: 35542328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of mobility in thin Bi2Se3 topological insulator for prospects of local electrical interconnects.
    Gupta G; Jalil MB; Liang G
    Sci Rep; 2014 Oct; 4():6838. PubMed ID: 25354476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. YSZ thin films with minimized grain boundary resistivity.
    Mills EM; Kleine-Boymann M; Janek J; Yang H; Browning ND; Takamura Y; Kim S
    Phys Chem Chem Phys; 2016 Apr; 18(15):10486-91. PubMed ID: 27030391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An innovative technique for electronic transport model of group-III nitrides.
    Srivastava A; Saxena A; Saxena PK; Gupta FK; Shakya P; Srivastava P; Dixit M; Gambhir S; Shukla RK; Srivastava A
    Sci Rep; 2020 Oct; 10(1):18706. PubMed ID: 33127982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous Extraction of the Grain Size, Single-Crystalline Grain Sheet Resistance, and Grain Boundary Resistivity of Polycrystalline Monolayer Graphene.
    Park H; Lee J; Lee CJ; Kang J; Yun J; Noh H; Park M; Lee J; Park Y; Park J; Choi M; Lee S; Park H
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.