These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Recent patents on Cu/low-k dielectrics interconnects in integrated circuits. Jiang Q; Zhu YF; Zhao M Recent Pat Nanotechnol; 2007; 1(3):193-209. PubMed ID: 19076033 [TBL] [Abstract][Full Text] [Related]
44. MAX-Phase Films Overcome Scaling Limitations to the Resistivity of Metal Thin Films. Yoo JE; Sung JY; Hwang JH; Maeng I; Oh SJ; Lee I; Shim JH; Kim SD; Yoon DS; Jang SY; Kang YJ; Lee SW ACS Appl Mater Interfaces; 2021 Dec; 13(51):61809-61817. PubMed ID: 34910869 [TBL] [Abstract][Full Text] [Related]
45. Effects of nanoscale surface roughness on the resistivity of ultrathin epitaxial copper films. Timalsina YP; Horning A; Spivey RF; Lewis KM; Kuan TS; Wang GC; Lu TM Nanotechnology; 2015 Feb; 26(7):075704. PubMed ID: 25627961 [TBL] [Abstract][Full Text] [Related]
46. Approaches to Measure the Resistivity of Grain Boundaries in Metals with High Sensitivity and Spatial Resolution: A Case Study Employing Cu. Bishara H; Ghidelli M; Dehm G ACS Appl Electron Mater; 2020 Jul; 2(7):2049-2056. PubMed ID: 32743558 [TBL] [Abstract][Full Text] [Related]
47. Electrical Interconnects Fabricated From Biodegradable Conductive Polymer Composites. Zhang T; Tsang M; Du L; Kim M; Allen MG IEEE Trans Compon Packaging Manuf Technol; 2019 May; 9(5):822-829. PubMed ID: 31179160 [TBL] [Abstract][Full Text] [Related]
48. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect. An BS; Kwon Y; Oh JS; Lee C; Choi S; Kim H; Lee M; Pae S; Yang CW ACS Appl Mater Interfaces; 2020 Jan; 12(2):3104-3113. PubMed ID: 31845581 [TBL] [Abstract][Full Text] [Related]
49. Increasing resistivity of electrically conductive ceramics by insulating grain boundary phase. Kusunose T; Sekino T ACS Appl Mater Interfaces; 2014 Feb; 6(4):2759-63. PubMed ID: 24499527 [TBL] [Abstract][Full Text] [Related]
50. Applicability of a linear diffusion model to determination of the height of the potential barrier at the grain boundaries of Fe-doped SrTiO Chang CS; Lubomirsky I; Kim S Phys Chem Chem Phys; 2018 Jul; 20(28):19250-19256. PubMed ID: 29989140 [TBL] [Abstract][Full Text] [Related]
51. Light wavelength effects in submicrometer phosphor materials using Mie scattering and Monte Carlo simulation. Liaparinos PF Med Phys; 2013 Oct; 40(10):101911. PubMed ID: 24089913 [TBL] [Abstract][Full Text] [Related]
52. Size-dependent electronic-transport mechanism and sign reversal of magnetoresistance in Nd0.5Sr0.5CoO3. Kundu S; Nath TK J Phys Condens Matter; 2012 Jun; 24(23):236005. PubMed ID: 22576276 [TBL] [Abstract][Full Text] [Related]
53. Similarity of scattering rates in metals showing T-linear resistivity. Bruin JA; Sakai H; Perry RS; Mackenzie AP Science; 2013 Feb; 339(6121):804-7. PubMed ID: 23413351 [TBL] [Abstract][Full Text] [Related]
54. Low resistivity metal silicide nanowires with extraordinarily high aspect ratio for future nanoelectronic devices. Chen SY; Yeh PH; Wu WW; Chen US; Chueh YL; Yang YC; Gwo S; Chen LJ ACS Nano; 2011 Nov; 5(11):9202-7. PubMed ID: 22010967 [TBL] [Abstract][Full Text] [Related]
55. Amorphous Ta An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921 [TBL] [Abstract][Full Text] [Related]
56. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms. Bouchard H; Bielajew A Phys Med Biol; 2015 Jul; 60(13):4963-71. PubMed ID: 26061045 [TBL] [Abstract][Full Text] [Related]
57. Electron mass scattering powers: Monte Carlo and analytical calculations. Li XA; Rogers DW Med Phys; 1995 May; 22(5):531-41. PubMed ID: 7643788 [TBL] [Abstract][Full Text] [Related]
58. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514 [TBL] [Abstract][Full Text] [Related]
59. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Han X; Wang L; Yue Y; Zhang Z Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291 [TBL] [Abstract][Full Text] [Related]
60. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Chiodarelli N; Masahito S; Kashiwagi Y; Li Y; Arstila K; Richard O; Cott DJ; Heyns M; De Gendt S; Groeseneken G; Vereecken PM Nanotechnology; 2011 Feb; 22(8):085302. PubMed ID: 21242623 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]