These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35630991)

  • 1. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles.
    Yang H; Mei Z; Li Z; Liu H; Deng H; Xiao G; Li J; Luo Y; Yuan L
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based optofluidic tweezers for refractive-index and size-based nanoparticle sorting, manipulation, and detection.
    Gholizadeh E; Jafari B; Golmohammadi S
    Sci Rep; 2023 Feb; 13(1):1975. PubMed ID: 36737494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping and manipulation of nanoparticles using multifocal optical vortex metalens.
    Ma Y; Rui G; Gu B; Cui Y
    Sci Rep; 2017 Nov; 7(1):14611. PubMed ID: 29097711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications.
    Ren Y; Chen Q; He M; Zhang X; Qi H; Yan Y
    ACS Nano; 2021 Apr; 15(4):6105-6128. PubMed ID: 33834771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Sci Rep; 2017 Nov; 7(1):14533. PubMed ID: 29109398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable optical traps over nonreciprocal surfaces.
    Paul NK; Gomez-Diaz JS
    Opt Express; 2022 Dec; 30(26):46344-46356. PubMed ID: 36558591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors.
    Biroju RK; Marepally BC; Malik P; Dhara S; Gengan S; Maity D; Narayanan TN; Giri PK
    ACS Omega; 2023 Jan; 8(4):4344-4356. PubMed ID: 36743051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear modulation on optical trapping in a plasmonic bowtie structure.
    Zhang W; Zhang Y; Zhang S; Wang Y; Yang W; Min C; Yuan X
    Opt Express; 2021 Apr; 29(8):11664-11673. PubMed ID: 33984942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of density and LSPR of Au nanoparticles on graphene.
    Lee S; Lee Mh; Shin HJ; Choi D
    Nanotechnology; 2013 Jul; 24(27):275702. PubMed ID: 23743613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation.
    Abbasi MM; Darbari S; Moravvej-Farshi MK
    Opt Express; 2019 Sep; 27(19):26648-26660. PubMed ID: 31674541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.