These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 35630996)
1. Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge. Zainal NA; Nazar R; Naganthran K; Pop I Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630996 [TBL] [Abstract][Full Text] [Related]
2. A novel hybridity model for TiO Dinarvand S; Rostami MN; Pop I Sci Rep; 2019 Nov; 9(1):16290. PubMed ID: 31704979 [TBL] [Abstract][Full Text] [Related]
3. Numerical study of the thermally stratified hemodynamic nanofluid flow with variable viscosity over a heated wedge. Akbar NS Front Chem; 2022; 10():1021303. PubMed ID: 36304747 [TBL] [Abstract][Full Text] [Related]
4. Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer. Rehman AU; Abbas Z; Hussain Z; Hasnain J; Asma M Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 38522098 [TBL] [Abstract][Full Text] [Related]
5. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet. Naganthran K; Nazar R; Pop I Sci Rep; 2016 Apr; 6():24632. PubMed ID: 27091085 [TBL] [Abstract][Full Text] [Related]
6. Heat and mass transfer analysis in unsteady flow of tangent hyperbolic nanofluid over a moving wedge with buoyancy and dissipation effects. Kebede T; Haile E; Awgichew G; Walelign T Heliyon; 2020 Apr; 6(4):e03776. PubMed ID: 32322736 [TBL] [Abstract][Full Text] [Related]
7. Thermal enhancement in Falkner-Skan flow of the nanofluid by considering molecular diameter and freezing temperature. Adnan ; Murtaza R; Hussain I; Rehman Z; Khan I; Andualem M Sci Rep; 2022 Jun; 12(1):9415. PubMed ID: 35676408 [TBL] [Abstract][Full Text] [Related]
8. Flow Characteristics of Heat and Mass for Nanofluid under Different Operating Temperatures over Wedge and Plate. Rizwan M; Hassan M; Asjad MI; Tag-ElDin EM Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557380 [TBL] [Abstract][Full Text] [Related]
9. Effect of Thermal Radiation on Three-Dimensional Magnetized Rotating Flow of a Hybrid Nanofluid. Asghar A; Lund LA; Shah Z; Vrinceanu N; Deebani W; Shutaywi M Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564275 [TBL] [Abstract][Full Text] [Related]
10. Computational investigation of magnetized hybrid nanofluids heat transport and flow through elongational surface with thermal radiation and wall slip. Hashim ; Alqahtani S; Rehman S; Alshehery S; Bibi S Heliyon; 2023 Oct; 9(10):e20056. PubMed ID: 37767515 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Nanofluids Flows Determined by a Permeable Power-Law Stretching/Shrinking Sheet Modulated by Orthogonal Surface Shear. Roşca NC; Pop I Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34202344 [TBL] [Abstract][Full Text] [Related]
12. Unsteady three-dimensional nodal stagnation point flow of polymer-based ternary-hybrid nanofluid past a stretching surface with suction and heat source. Mahmood Z; Khan U Sci Prog; 2023; 106(1):368504231152741. PubMed ID: 36703499 [TBL] [Abstract][Full Text] [Related]
13. Dual solutions of unsteady flow of copper-alumina/water based hybrid nanofluid with acute magnetic force and slip condition. Rasool G; Xinhua W; Lund LA; Yashkun U; Wakif A; Asghar A Heliyon; 2023 Dec; 9(12):e22737. PubMed ID: 38107315 [TBL] [Abstract][Full Text] [Related]
14. Response Surface Methodology (RSM) on the Hybrid Nanofluid Flow Subject to a Vertical and Permeable Wedge. Khashi'ie NS; Waini I; Mukhtar MF; Zainal NA; Hamzah KB; Arifin NM; Pop I Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432302 [TBL] [Abstract][Full Text] [Related]
15. Effect of Couple Stress and Mass Transpiration on Ternary Hybrid Nanoliquid over a Stretching/Shrinking Sheet with Heat Transfer. Sneha KN; Vanitha GP; Mahabaleshwar US; Laroze D Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296047 [TBL] [Abstract][Full Text] [Related]
16. Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition. Asghar A; Chandio AF; Shah Z; Vrinceanu N; Deebani W; Shutaywi M; Lund LA Heliyon; 2023 Feb; 9(2):e13189. PubMed ID: 36747513 [TBL] [Abstract][Full Text] [Related]
17. Mixed Convection Hybrid Nanofluid Flow Induced by an Inclined Cylinder with Lorentz Forces. Sohut FH; Khan U; Ishak A; Soid SK; Waini I Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241605 [TBL] [Abstract][Full Text] [Related]
18. Thermal Transmission Comparison of Nanofluids over Stretching Surface under the Influence of Magnetic Field. Arshad M; Karamti H; Awrejcewicz J; Grzelczyk D; Galal AM Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014219 [TBL] [Abstract][Full Text] [Related]
19. Entropy Generation on Nanofluid Thin Film Flow of Eyring-Powell Fluid with Thermal Radiation and MHD Effect on an Unsteady Porous Stretching Sheet. Ishaq M; Ali G; Shah Z; Islam S; Muhammad S Entropy (Basel); 2018 May; 20(6):. PubMed ID: 33265502 [TBL] [Abstract][Full Text] [Related]
20. Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions. Ramzan M; Dawar A; Saeed A; Kumam P; Watthayu W; Kumam W PLoS One; 2021; 16(12):e0260854. PubMed ID: 34905556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]