BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35631331)

  • 21. Recent Progress in 1H-1,2,3-triazoles as Potential Antifungal Agents.
    Poonia N; Kumar A; Kumar V; Yadav M; Lal K
    Curr Top Med Chem; 2021; 21(23):2109-2133. PubMed ID: 34517801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vimentin as a potential therapeutic target in sorafenib resistant HepG2, a HCC model cell line.
    Makol A; Kaur H; Sharma S; Kanthaje S; Kaur R; Chakraborti A
    Clin Mol Hepatol; 2020 Jan; 26(1):45-53. PubMed ID: 31564085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of VX2 as a Hepatocellular Carcinoma Model: Comparison of the Molecular Reaction of VX2 and HepG2 Tumor Cells to Sorafenib In Vitro.
    Nass N; Streit S; Wybranski C; Jürgens J; Brauner J; Schulz N; Powerski M; Ricke J; Kalinski T; Dudeck O; Seidensticker M
    Anticancer Res; 2017 Jan; 37(1):87-93. PubMed ID: 28011478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted Delivery of Glypican 3 (GPC3) Antibody-Modified MicroRNA (miR let-7b-5p) Polymer Nanoparticles to Sorafenib-Resistant Hepatsocellular Carcinoma Cells.
    Zhou S; Ma Y; Liu X; Yu P; Huang N; Song L; Xu R; Huo Z; Zhu T; Tang X
    J Biomed Nanotechnol; 2021 Apr; 17(4):677-690. PubMed ID: 35057893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MiRNA153 Reduces Effects of Chemotherapeutic Agents or Small Molecular Kinase Inhibitor in HCC Cells.
    Chen Y; Feng F; Gao X; Wang C; Sun H; Zhang C; Zeng Z; Lu Y; An L; Qu J; Wang F; Yang Y
    Curr Cancer Drug Targets; 2015; 15(3):176-87. PubMed ID: 25714700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.
    Pereira GR; Brandão GC; Arantes LM; de Oliveira HA; de Paula RC; do Nascimento MF; dos Santos FM; da Rocha RK; Lopes JC; de Oliveira AB
    Eur J Med Chem; 2014 Feb; 73():295-309. PubMed ID: 24469080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach.
    Gao P; Sun L; Zhou J; Li X; Zhan P; Liu X
    Expert Opin Drug Discov; 2016 Sep; 11(9):857-71. PubMed ID: 27400283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma.
    Abbattista MR; Jamieson SM; Gu Y; Nickel JE; Pullen SM; Patterson AV; Wilson WR; Guise CP
    Cancer Biol Ther; 2015; 16(4):610-22. PubMed ID: 25869917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and anticancer activity of dimeric podophyllotoxin derivatives.
    Zi CT; Yang L; Xu FQ; Dong FW; Yang D; Li Y; Ding ZT; Zhou J; Jiang ZH; Hu JM
    Drug Des Devel Ther; 2018; 12():3393-3406. PubMed ID: 30349193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and evaluation of the cytotoxic activity.
    Queiroz TM; Orozco EVM; Silva VR; Santos LS; Soares MBP; Bezerra DP; Porto ALM
    Heliyon; 2019 Sep; 5(9):e02408. PubMed ID: 31517128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells.
    Sudan S; Rupasinghe HP
    Anticancer Res; 2014 Apr; 34(4):1691-9. PubMed ID: 24692698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Valproic acid reverses sorafenib resistance through inhibiting activated Notch/Akt signaling pathway in hepatocellular carcinoma.
    Yang X; Liu J; Liang Q; Sun G
    Fundam Clin Pharmacol; 2021 Aug; 35(4):690-699. PubMed ID: 33015852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterometallic alumo- and gallodisilicates with M(O-Si-O)2M' and [M(O-Si-O)2]2M' cores (M = Al, Ga; M' = Ti, Zr, Hf).
    Huerta-Lavorie R; Solis-Ibarra D; Báez-Rodríguez DV; Reyes-Lezama M; de las Nieves Zavala-Segovia M; Jancik V
    Inorg Chem; 2013 Jun; 52(12):6934-43. PubMed ID: 23718324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines.
    Rangwala F; Williams KP; Smith GR; Thomas Z; Allensworth JL; Lyerly HK; Diehl AM; Morse MA; Devi GR
    BMC Cancer; 2012 Sep; 12():402. PubMed ID: 22963400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A New Series of Triazolothiadiazines as Potential Anticancer Agents for Targeted Therapy of Non-Small Cell Lung and Colorectal Cancers: Design, Synthesis, In silico and In vitro Studies Providing Mechanistic Insight into Their Anticancer Potencies.
    Sever B; Altıntop MD; Çiftçi GA; Özdemir A
    Med Chem; 2021; 17(10):1104-1128. PubMed ID: 33087032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OSU-2S/Sorafenib Synergistic Antitumor Combination against Hepatocellular Carcinoma: The Role of PKCδ/p53.
    Omar HA; Tolba MF; Hung JH; Al-Tel TH
    Front Pharmacol; 2016; 7():463. PubMed ID: 27965580
    [No Abstract]   [Full Text] [Related]  

  • 37. CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma.
    Karkampouna S; van der Helm D; Gray PC; Chen L; Klima I; Grosjean J; Burgmans MC; Farina-Sarasqueta A; Snaar-Jagalska EB; Stroka DM; Terracciano L; van Hoek B; Schaapherder AF; Osanto S; Thalmann GN; Verspaget HW; Coenraad MJ; Kruithof-de Julio M
    J Pathol; 2018 Jul; 245(3):297-310. PubMed ID: 29604056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of possible effects of apigenin, sorafenib and combined applications on apoptosis and cell cycle in hepatocellular cancer cells.
    Şirin N; Elmas L; Seçme M; Dodurga Y
    Gene; 2020 May; 737():144428. PubMed ID: 32045658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. YC-1 enhances the anti-tumor activity of sorafenib through inhibition of signal transducer and activator of transcription 3 (STAT3) in hepatocellular carcinoma.
    Kong J; Kong F; Gao J; Zhang Q; Dong S; Gu F; Ke S; Pan B; Shen Q; Sun H; Zheng L; Sun W
    Mol Cancer; 2014 Jan; 13():7. PubMed ID: 24418169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells.
    Mansour GH; El-Magd MA; Mahfouz DH; Abdelhamid IA; Mohamed MF; Ibrahim NS; Hady A Abdel Wahab A; Elzayat EM
    Bioorg Chem; 2021 Nov; 116():105329. PubMed ID: 34544028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.