These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35631791)
1. Decontamination and Germination of Buckwheat Grains upon Treatment with Oxygen Plasma Glow and Afterglow. Mravlje J; Regvar M; Starič P; Zaplotnik R; Mozetič M; Vogel-Mikuš K Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631791 [TBL] [Abstract][Full Text] [Related]
2. Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds. Mravlje J; Regvar M; Starič P; Mozetič M; Vogel-Mikuš K Plants (Basel); 2021 Apr; 10(5):. PubMed ID: 33922511 [TBL] [Abstract][Full Text] [Related]
3. The Sensitivity of Fungi Colonising Buckwheat Grains to Cold Plasma Is Species Specific. Mravlje J; Kobal T; Regvar M; Starič P; Zaplotnik R; Mozetič M; Vogel-Mikuš K J Fungi (Basel); 2023 May; 9(6):. PubMed ID: 37367545 [TBL] [Abstract][Full Text] [Related]
4. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Selcuk M; Oksuz L; Basaran P Bioresour Technol; 2008 Jul; 99(11):5104-9. PubMed ID: 17993274 [TBL] [Abstract][Full Text] [Related]
5. Chemical alterations of grain surface by cold plasma technology: Comparison of buckwheat and wheat grain responses to oxygen low-pressure plasma. Starič P; Kolmanič A; Junkar I; Vogel-Mikuš K Heliyon; 2023 Sep; 9(9):e20215. PubMed ID: 37809366 [TBL] [Abstract][Full Text] [Related]
6. The Influence of Glow and Afterglow Cold Plasma Treatment on Biochemistry, Morphology, and Physiology of Wheat Seeds. Starič P; Mravlje J; Mozetič M; Zaplotnik R; Šetina Batič B; Junkar I; Vogel Mikuš K Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806379 [TBL] [Abstract][Full Text] [Related]
7. Response of Two Different Wheat Varieties to Glow and Afterglow Oxygen Plasma. Starič P; Grobelnik Mlakar S; Junkar I Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451772 [TBL] [Abstract][Full Text] [Related]
8. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Kovačec E; Likar M; Regvar M Fungal Biol; 2016 May; 120(5):666-78. PubMed ID: 27109364 [TBL] [Abstract][Full Text] [Related]
9. Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Los A; Ziuzina D; Akkermans S; Boehm D; Cullen PJ; Van Impe J; Bourke P Food Res Int; 2018 Apr; 106():509-521. PubMed ID: 29579955 [TBL] [Abstract][Full Text] [Related]
10. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Butscher D; Van Loon H; Waskow A; Rudolf von Rohr P; Schuppler M Int J Food Microbiol; 2016 Dec; 238():222-232. PubMed ID: 27668570 [TBL] [Abstract][Full Text] [Related]
11. Application of cold argon plasma on germination, root length, and decontamination of soybean cultivars. Sayahi K; Sari AH; Hamidi A; Nowruzi B; Hassani F BMC Plant Biol; 2024 Jan; 24(1):59. PubMed ID: 38247007 [TBL] [Abstract][Full Text] [Related]
12. Reduction of T-2 and HT-2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains. Iqdiam BM; Feizollahi E; Arif MF; Jeganathan B; Vasanthan T; Thilakarathna MS; Roopesh MS J Food Sci; 2021 Apr; 86(4):1354-1371. PubMed ID: 33682128 [TBL] [Abstract][Full Text] [Related]
13. Effects of Exogenous Caffeic Acid, L-Phenylalanine and NaCl Treatments on Main Active Components Content and Peng W; Wang N; Wang S; Wang J; Dong Y Foods; 2022 Nov; 11(22):. PubMed ID: 36429274 [TBL] [Abstract][Full Text] [Related]
14. Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. Mravlje J; Regvar M; Vogel-Mikuš K J Fungi (Basel); 2021 Aug; 7(8):. PubMed ID: 34436189 [TBL] [Abstract][Full Text] [Related]
15. The effects of hydrothermal processing and germination on Fe speciation and Fe bioaccessibility to human intestinal Caco-2 cells in Tartary buckwheat. Pongrac P; Scheers N; Sandberg AS; Potisek M; Arčon I; Kreft I; Kump P; Vogel-Mikuš K Food Chem; 2016 May; 199():782-90. PubMed ID: 26776035 [TBL] [Abstract][Full Text] [Related]
16. Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum). Likar M; Bukovnik U; Kreft I; Chrungoo NK; Regvar M Mycorrhiza; 2008 Sep; 18(6-7):309-15. PubMed ID: 18597124 [TBL] [Abstract][Full Text] [Related]
17. Effect of germination temperatures on proteolysis of the gluten-free grains rice and buckwheat during malting and mashing. Agu RC; Chiba Y; Goodfellow V; MacKinlay J; Brosnan JM; Bringhurst TA; Jack FR; Harrison B; Pearson SY; Bryce JH J Agric Food Chem; 2012 Oct; 60(40):10147-54. PubMed ID: 22950683 [TBL] [Abstract][Full Text] [Related]
18. Germinated Buckwheat: Effects of Dehulling on Phenolics Profile and Antioxidant Activity of Buckwheat Seeds. Živković A; Polak T; Cigić B; Požrl T Foods; 2021 Apr; 10(4):. PubMed ID: 33915814 [TBL] [Abstract][Full Text] [Related]
19. The response of tartary buckwheat and 19 bZIP genes to abscisic acid (ABA). Xiao S; Liu Y; Wang A; Liu Y; Li X; Liu Z; Li X; Yang Y; Wang J Mol Biol Rep; 2021 May; 48(5):4341-4350. PubMed ID: 34097202 [TBL] [Abstract][Full Text] [Related]
20. Tartary Buckwheat: A New Plant-Based Ingredient to Enrich Corn-Based Gluten-Free Formulations. Appiani M; Rabitti NS; Proserpio C; Pagliarini E; Laureati M Foods; 2021 Oct; 10(11):. PubMed ID: 34828896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]