BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35631927)

  • 1. Prediction of Thermal Conductivities of Rubbers by MD Simulations-New Insights.
    Vasilev A; Lorenz T; Breitkopf C
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Conductivity of Polybutadiene Rubber from Molecular Dynamics Simulations and Measurements by the Heat Flow Meter Method.
    Vasilev A; Lorenz T; Kamble VG; Wießner S; Breitkopf C
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Conductivities of Uniform and Random Sulfur Crosslinking in Polybutadiene by Molecular Dynamic Simulation.
    Alamfard T; Lorenz T; Breitkopf C
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Conductivities of Crosslinked Polyisoprene and Polybutadiene from Molecular Dynamics Simulations.
    Vasilev A; Lorenz T; Breitkopf C
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Conductivity of Polyisoprene and Polybutadiene from Molecular Dynamics Simulations and Transient Measurements.
    Vasilev A; Lorenz T; Breitkopf C
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32397379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2007 May; 126(20):204511. PubMed ID: 17552782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glass Transition Temperatures and Thermal Conductivities of Polybutadiene Crosslinked with Randomly Distributed Sulfur Chains Using Molecular Dynamic Simulation.
    Alamfard T; Lorenz T; Breitkopf C
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalence of the EMD- and NEMD-based decomposition of thermal conductivity into microscopic building blocks.
    Matsubara H; Kikugawa G; Ishikiriyama M; Yamashita S; Ohara T
    J Chem Phys; 2017 Sep; 147(11):114104. PubMed ID: 28938811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of thermal conductivity in classical water models.
    Sirk TW; Moore S; Brown EF
    J Chem Phys; 2013 Feb; 138(6):064505. PubMed ID: 23425477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductivity of highly asymmetric binary mixtures: how important are heat/mass coupling effects?
    Armstrong J; Bresme F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12307-16. PubMed ID: 24818599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Note: local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations.
    Bresme F; Armstrong J
    J Chem Phys; 2014 Jan; 140(1):016102. PubMed ID: 24410242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Studies of the Mechanical Behaviors and Thermal Conductivity of Polyisoprene with Different Degrees of Polymerization.
    Chen Z; Tu Q; Fang Z; Shen X; Yin Q; Zhang X; Pan M
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.
    Tadano T; Gohda Y; Tsuneyuki S
    J Phys Condens Matter; 2014 Jun; 26(22):225402. PubMed ID: 24824156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the thermal conductivity of human serum albumin (HSA) with equilibrium/non-equilibrium molecular dynamics approaches.
    Ashkezari AZ; Jolfaei NA; Jolfaei NA; Hekmatifar M; Toghraie D; Sabetvand R; Rostami S
    Comput Methods Programs Biomed; 2020 May; 188():105256. PubMed ID: 31841788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity calculation of nano-suspensions using Green-Kubo relations with reduced artificial correlations.
    Muraleedharan MG; Sundaram DS; Henry A; Yang V
    J Phys Condens Matter; 2017 Apr; 29(15):155302. PubMed ID: 28170348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations.
    Hyżorek K; Tretiakov KV
    J Chem Phys; 2016 May; 144(19):194507. PubMed ID: 27208958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessing the thermal conductivities of Sb
    Zhang P; Qin M; Zhang Z; Jin D; Liu Y; Wang Z; Lu Z; Shi J; Xiong R
    Phys Chem Chem Phys; 2023 Feb; 25(8):6164-6174. PubMed ID: 36752176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Conductivity of B-DNA.
    Mahalingam V; Harursampath D
    J Phys Chem B; 2021 Feb; 125(5):1363-1368. PubMed ID: 33523668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Müller-Plathe F; Böhm MC
    J Chem Phys; 2011 Nov; 135(18):184905. PubMed ID: 22088079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations.
    Galamba N; de Castro CA; Ely JF
    J Chem Phys; 2005 Jun; 122(22):224501. PubMed ID: 15974685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.