These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35632011)
1. Compressive Strength Estimation of Geopolymer Composites through Novel Computational Approaches. Amin MN; Khan K; Ahmad W; Javed MF; Qureshi HJ; Saleem MU; Qadir MG; Faraz MI Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632011 [TBL] [Abstract][Full Text] [Related]
2. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869 [TBL] [Abstract][Full Text] [Related]
3. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete. Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J Gels; 2024 Feb; 10(2):. PubMed ID: 38391478 [TBL] [Abstract][Full Text] [Related]
4. Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146051 [TBL] [Abstract][Full Text] [Related]
5. Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites. Wang Q; Ahmad W; Ahmad A; Aslam F; Mohamed A; Vatin NI Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335405 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques. Amin MN; Khan K; Javed MF; Aslam F; Qadir MG; Faraz MI Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629515 [TBL] [Abstract][Full Text] [Related]
7. Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica. Ahmed HU; Mohammed AS; Mohammed AA Environ Sci Pollut Res Int; 2022 Oct; 29(47):71232-71256. PubMed ID: 35595907 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms. Ahmad A; Ahmad W; Chaiyasarn K; Ostrowski KA; Aslam F; Zajdel P; Joyklad P Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641204 [TBL] [Abstract][Full Text] [Related]
9. Assessment of Artificial Intelligence Strategies to Estimate the Strength of Geopolymer Composites and Influence of Input Parameters. Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Al-Faiad MA Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746085 [TBL] [Abstract][Full Text] [Related]
10. Deep learning-based prediction of compressive strength of eco-friendly geopolymer concrete. Tanyildizi H Environ Sci Pollut Res Int; 2024 Jun; 31(28):41246-41266. PubMed ID: 38844634 [TBL] [Abstract][Full Text] [Related]
11. Application of Gene Expression Programming (GEP) for the Prediction of Compressive Strength of Geopolymer Concrete. Ali Khan M; Zafar A; Akbar A; Javed MF; Mosavi A Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652972 [TBL] [Abstract][Full Text] [Related]
12. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete. Ahmed HU; Mohammed AA; Mohammed A PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110 [TBL] [Abstract][Full Text] [Related]
13. Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete. Gunasekara C; Atzarakis P; Lokuge W; Law DW; Setunge S Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804194 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the Mechanical Properties of Quick-Strength Geopolymer Material Considering Preheated-to-Room Temperature Ratio of Sand, Na Bhina MR; Liu KY; Hu JH; Tsai CT Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904325 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Compressive Strength of Fly Ash-Slag Based Geopolymer Paste Based on Multi-Optimized Artificial Neural Network. Bai M; Zhang Z; Cao K; Li H; He C Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770097 [TBL] [Abstract][Full Text] [Related]
16. Statistical Methods for Modeling the Compressive Strength of Geopolymer Mortar. Ahmed HU; Abdalla AA; Mohammed AS; Mohammed AA; Mosavi A Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269099 [TBL] [Abstract][Full Text] [Related]
17. Machine learning and interactive GUI for concrete compressive strength prediction. Elshaarawy MK; Alsaadawi MM; Hamed AK Sci Rep; 2024 Jul; 14(1):16694. PubMed ID: 39030283 [TBL] [Abstract][Full Text] [Related]
18. Application of Machine Learning Approaches to Predict the Strength Property of Geopolymer Concrete. Cao R; Fang Z; Jin M; Shang Y Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407733 [TBL] [Abstract][Full Text] [Related]
19. Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques. Xu Y; Ahmad W; Ahmad A; Ostrowski KA; Dudek M; Aslam F; Joyklad P Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832432 [TBL] [Abstract][Full Text] [Related]
20. Bayesian Regularized Artificial Neural Network Model to Predict Strength Characteristics of Fly-Ash and Bottom-Ash Based Geopolymer Concrete. Aneja S; Sharma A; Gupta R; Yoo DY Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33915938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]