These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35632022)

  • 1. What Actually Works for Activity Recognition in Scenarios with Significant Domain Shift: Lessons Learned from the 2019 and 2020 Sussex-Huawei Challenges.
    Kalabakov S; Stankoski S; Kiprijanovska I; Andova A; Reščič N; Janko V; Gjoreski M; Gams M; Luštrek M
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensor-Driven IoT Wearables for Accurate Body Motion Tracking and Localization.
    Almujally NA; Khan D; Al Mudawi N; Alonazi M; Alazeb A; Algarni A; Jalal A; Liu H
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and Long-Term IndRNN for Activity Recognition.
    Zhao B; Li S; Gao Y; Li C; Li W
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Semi-Automatic Annotation Approach for Human Activity Recognition.
    Bota P; Silva J; Folgado D; Gamboa H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transportation Mode Detection Combining CNN and Vision Transformer with Sensors Recalibration Using Smartphone Built-In Sensors.
    Tian Y; Hettiarachchi D; Kamijo S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent Localization and Deep Human Activity Recognition through IoT Devices.
    Alazeb A; Azmat U; Al Mudawi N; Alshahrani A; Alotaibi SS; Almujally NA; Jalal A
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-supervised representation learning for surgical activity recognition.
    Paysan D; Haug L; Bajka M; Oelhafen M; Buhmann JM
    Int J Comput Assist Radiol Surg; 2021 Nov; 16(11):2037-2044. PubMed ID: 34542839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing the Importance of Sensors for Mode of Transportation Classification.
    Friedrich B; Lübbe C; Hein A
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the semi-supervised learning-based patient similarity from heterogeneous electronic medical records.
    Wang N; Huang Y; Liu H; Zhang Z; Wei L; Fei X; Chen H
    BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):58. PubMed ID: 34330261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor.
    Li H; Derrode S; Pieczynski W
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning.
    Lu Y; Wang H; Hu F; Zhou B; Xi H
    Med Biol Eng Comput; 2021 Apr; 59(4):883-899. PubMed ID: 33745104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Analysis of Boosting Classifiers in Recognizing Activities of Daily Living.
    Rahman S; Irfan M; Raza M; Moyeezullah Ghori K; Yaqoob S; Awais M
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic task recognition in a flexible endoscopy benchtop trainer with semi-supervised learning.
    Bencteux V; Saibro G; Shlomovitz E; Mascagni P; Perretta S; Hostettler A; Marescaux J; Collins T
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1585-1595. PubMed ID: 32592068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand.
    Ebner M; Fetzer T; Bullmann M; Deinzer F; Grzegorzek M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement.
    Herrera-Alcántara O; Barrera-Animas AY; González-Mendoza M; Castro-Espinoza F
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transportation Mode Detection Using Temporal Convolutional Networks Based on Sensors Integrated into Smartphones.
    Wang P; Jiang Y
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.