These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35632096)
1. Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery. Adke S; Li C; Rasheed KM; Maier FW Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632096 [TBL] [Abstract][Full Text] [Related]
2. A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting. Ghosal S; Zheng B; Chapman SC; Potgieter AB; Jordan DR; Wang X; Singh AK; Singh A; Hirafuji M; Ninomiya S; Ganapathysubramanian B; Sarkar S; Guo W Plant Phenomics; 2019; 2019():1525874. PubMed ID: 33313521 [TBL] [Abstract][Full Text] [Related]
3. Combining ability analysis for within-boll yield components in upland cotton (Gossypium hirsutum L.). Imran M; Shakeel A; Azhar FM; Farooq J; Saleem MF; Saeed A; Nazeer W; Riaz M; Naeem M; Javaid A Genet Mol Res; 2012 Aug; 11(3):2790-800. PubMed ID: 23007974 [TBL] [Abstract][Full Text] [Related]
4. [Effect of seedling stage shading on cotton yield and its quality formation]. Zhou Z; Meng Y; Shi P Ying Yong Sheng Tai Xue Bao; 2002 Aug; 13(8):997-1000. PubMed ID: 12418264 [TBL] [Abstract][Full Text] [Related]
6. Oviposition on and mining in bolls of Bt and non-Bt cotton by resistant and susceptible pink bollworm (Lepidoptera: Gelechiidae). Liu YB; Tabashnik BE; Dennehy TJ; Carrière Y; Sims MA; Meyer SK J Econ Entomol; 2002 Feb; 95(1):143-8. PubMed ID: 11942750 [TBL] [Abstract][Full Text] [Related]
7. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging. Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S Plant Methods; 2020; 16():40. PubMed ID: 32206080 [TBL] [Abstract][Full Text] [Related]
8. YOLO SSPD: a small target cotton boll detection model during the boll-spitting period based on space-to-depth convolution. Zhang M; Chen W; Gao P; Li Y; Tan F; Zhang Y; Ruan S; Xing P; Guo L Front Plant Sci; 2024; 15():1409194. PubMed ID: 38966142 [TBL] [Abstract][Full Text] [Related]
9. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton. Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963 [TBL] [Abstract][Full Text] [Related]
10. Detection and analysis of wheat spikes using Convolutional Neural Networks. Hasan MM; Chopin JP; Laga H; Miklavcic SJ Plant Methods; 2018; 14():100. PubMed ID: 30459822 [TBL] [Abstract][Full Text] [Related]
11. Transmission of Cotton Seed and Boll Rotting Bacteria by the Verde Plant Bug (Hemiptera: Miridae). Glover JP; Medrano EG; Isakeit T; Brewer MJ J Econ Entomol; 2020 Apr; 113(2):793-799. PubMed ID: 31879770 [TBL] [Abstract][Full Text] [Related]
12. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Sebai M; Wang X; Wang T Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109 [TBL] [Abstract][Full Text] [Related]
13. Heterosis and correlation in interspecific and intraspecific hybrids of cotton. Munir S; Hussain SB; Manzoor H; Quereshi MK; Zubair M; Nouman W; Shehzad AN; Rasul S; Manzoor SA Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420964 [TBL] [Abstract][Full Text] [Related]
14. Boll injury and yield losses in cotton associated with brown stink bug (Heteroptera: Pentatomidae) during flowering. Willrich MM; Leonard BR; Gable RH; Lamotte LR J Econ Entomol; 2004 Dec; 97(6):1928-34. PubMed ID: 15666747 [TBL] [Abstract][Full Text] [Related]
15. Fast interactive medical image segmentation with weakly supervised deep learning method. Girum KB; Créhange G; Hussain R; Lalande A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning on Construction Sites: A Case Study of Sparse Data Learning Techniques for Rebar Segmentation. Cuypers S; Bassier M; Vergauwen M Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450870 [TBL] [Abstract][Full Text] [Related]
17. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning. Lin Z; Guo W Front Plant Sci; 2020; 11():534853. PubMed ID: 32983210 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning. Tian F; Vieira CC; Zhou J; Zhou J; Chen P Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952 [TBL] [Abstract][Full Text] [Related]
19. Cotton boll localization method based on point annotation and multi-scale fusion. Sun M; Li Y; Qi Y; Zhou H; Tian L Front Plant Sci; 2022; 13():960592. PubMed ID: 36061777 [TBL] [Abstract][Full Text] [Related]
20. Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery. Katari S; Venkatesh S; Stewart C; Khanal S Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]