These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35632097)

  • 1. A Deep-Learning-Based Health Indicator Constructor Using Kullback-Leibler Divergence for Predicting the Remaining Useful Life of Concrete Structures.
    Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Scheme with Acoustic Emission Hit Removal for the Remaining Useful Life Prediction of Concrete Structures.
    Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction.
    Huang L; Pan X; Liu Y; Gong L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction.
    Wang L; Liu H; Pan Z; Fan D; Zhou C; Wang Z
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive Prognosis Framework Between Deep Learning and a Stochastic Process Model for Remaining Useful Life Prediction.
    Pei H; Si X; Li T; Zhang Z; Lei Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37725744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction.
    Chen D; Qin Y; Wang Y; Zhou J
    ISA Trans; 2021 Aug; 114():44-56. PubMed ID: 33402262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme.
    Hou G; Xu S; Zhou N; Yang L; Fu Q
    Comput Intell Neurosci; 2020; 2020():9601389. PubMed ID: 32802032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings.
    Yan X; Xia X; Wang L; Zhang Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis.
    Rosa TGD; Melani AHA; Pereira FH; Kashiwagi FN; Souza GFM; Salles GMO
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kullback-Leibler Divergence Metric Learning.
    Ji S; Zhang Z; Ying S; Wang L; Zhao X; Gao Y
    IEEE Trans Cybern; 2022 Apr; 52(4):2047-2058. PubMed ID: 32721911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fault detection in the distillation column process using Kullback Leibler divergence.
    Aggoune L; Chetouani Y; Raïssi T
    ISA Trans; 2016 Jul; 63():394-400. PubMed ID: 27020311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Generic Formula and Some Special Cases for the Kullback-Leibler Divergence between Central Multivariate Cauchy Distributions.
    Bouhlel N; Rousseau D
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Reliable Health Indicator for Fault Prognosis of Bearings.
    Duong BP; Khan SA; Shon D; Im K; Park J; Lim DS; Jang B; Kim JM
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent Learning.
    Li X; Zhang W; Ma H; Luo Z; Li X
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5480-5491. PubMed ID: 33852404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes.
    Wang D; Xian X; Song C
    IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing.
    Yang C; Ma J; Wang X; Li X; Li Z; Luo T
    ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of a Kullback-Leibler Divergence for Comparing Non-nested Models.
    Wang CP; Jo B
    Stat Modelling; 2013 Dec; 13(5-6):409-429. PubMed ID: 24795532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new ensemble residual convolutional neural network for remaining useful life estimation.
    Wen L; Dong Y; Gao L
    Math Biosci Eng; 2019 Jan; 16(2):862-880. PubMed ID: 30861669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion.
    Peng C; Chen Y; Gui W; Tang Z; Li C
    Sci Rep; 2022 Apr; 12(1):6491. PubMed ID: 35444248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.