These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35632115)

  • 1. Design of Lidar Data Acquisition and Control System in High Repetition Rate and Photon-Counting Mode: Providing Testing for Space-Borne Lidar.
    Cheng L; Xie C; Zhao M; Li L; Yang H; Fang Z; Chen J; Liu D; Wang Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman lidar at 355  nm using low dead time photon counting for atmospheric aerosol measurements.
    Chen F; Wu L; Chen C; Wan X; Chen W; Chen X; Zhou J; Cheng M; Fu Z; Ding N; Deng Z; Shen Y; Liu C; Bai J; Wu L; Sun W; Liu D
    Appl Opt; 2024 Feb; 63(6):1529-1537. PubMed ID: 38437365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on Automatic Identification of Aerosols Boundary Layer Height with Local Optimum Model Based on Lidar Data].
    Teng JY; Qin K; Wang YJ; Lin LX; Sun XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):361-7. PubMed ID: 30264962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research.
    De Young R; Carrion W; Ganoe R; Pliutau D; Gronoff G; Berkoff T; Kuang S
    Appl Opt; 2017 Jan; 56(3):721-730. PubMed ID: 28157936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coded-pulse-bunch-laser-based single-photon lidar for fast long-distance ranging.
    Ding Y; Wu H; Gao X; Wu B; Shen Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Feb; 39(2):206-212. PubMed ID: 35200953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New methods of data calibration for high power-aperture lidar.
    Guan S; Yang G; Chang Q; Cheng X; Yang Y; Gong S; Wang J
    Opt Express; 2013 Mar; 21(6):7768-85. PubMed ID: 23546158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System.
    Abdelazim S; Santoro D; Arend M; Moshary F; Ahmed S
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors.
    Ma Y; Li S; Zhang W; Zhang Z; Liu R; Wang XH
    Opt Express; 2018 Jun; 26(12):15924-15934. PubMed ID: 30114846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.
    Nie S; Wang C; Xi X; Luo S; Li G; Tian J; Wang H
    Opt Express; 2018 May; 26(10):A520-A540. PubMed ID: 29801258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: performance simulations.
    Di Girolamo P; Behrendt A; Wulfmeyer V
    Opt Express; 2018 Apr; 26(7):8125-8161. PubMed ID: 29715784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical model considering optimal ranging performance and energy efficiency for photon-counting lidars with multiple detectors.
    Yang J; Ma Y; Li S; Liu X; Zhang W; Zhang Z
    Appl Opt; 2021 Oct; 60(28):8838-8850. PubMed ID: 34613110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.
    Marais WJ; Holz RE; Hu YH; Kuehn RE; Eloranta EE; Willett RM
    Appl Opt; 2016 Oct; 55(29):8316-8334. PubMed ID: 27828081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardware accelerated compression of LIDAR data using FPGA devices.
    Biasizzo A; Novak F
    Sensors (Basel); 2013 May; 13(5):6405-22. PubMed ID: 23673680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.
    Liu Z; Voelger P; Sugimoto N
    Appl Opt; 2000 Jun; 39(18):3120-37. PubMed ID: 18345243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the ranging performance of chaos LiDAR.
    Hu Z; Zhu J; Jiang C; Hu T; Jiang Y; Yuan Y; Ye Z; Wang Y
    Appl Opt; 2023 May; 62(14):3598-3605. PubMed ID: 37706975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential absorption lidar data acquisition and control system for remote detection of trace chemicals including methane and thiodiglycol.
    Jindal MK; Mainuddin M; Veerabuthiran S
    Rev Sci Instrum; 2023 Feb; 94(2):024705. PubMed ID: 36859023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Entropy-Based Anti-Noise Method for Reducing Ranging Error in Photon Counting Lidar.
    Huang M; Zhang Z; Xie J; Li J; Zhao Y
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ranging performance models based on negative-binomial (NB) distribution for photon-counting lidars.
    Li S; Zhang Z; Ma Y; Zeng H; Zhao P; Zhang W
    Opt Express; 2019 Jun; 27(12):A861-A877. PubMed ID: 31252861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gluing for Raman lidar systems using the lamp mapping technique.
    Walker M; Venable D; Whiteman DN
    Appl Opt; 2014 Dec; 53(36):8535-43. PubMed ID: 25608203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO
    Ai X; Pérez-Serrano A; Quatrevalet M; Nock RW; Dahnoun N; Ehret G; Esquivias I; Rarity JG
    Opt Express; 2016 Sep; 24(18):21119-33. PubMed ID: 27607715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.