These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35632145)
1. Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones. Song Z; Park HJ; Thapa N; Yang JG; Harada K; Lee S; Shimada H; Park H; Park BK Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632145 [TBL] [Abstract][Full Text] [Related]
2. A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones. Kang X; Huang B; Qi G Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351223 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning Estimation of COVID-19 Social Distance using Smartphone Sensor Data. Semenov O; Agu E; Pahlavan K Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4452-4457. PubMed ID: 34892208 [TBL] [Abstract][Full Text] [Related]
4. Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study. Straczkiewicz M; Keating NL; Thompson E; Matulonis UA; Campos SM; Wright AA; Onnela JP JMIR Cancer; 2023 Nov; 9():e47646. PubMed ID: 37966891 [TBL] [Abstract][Full Text] [Related]
5. Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System. Alo UR; Nweke HF; Teh YW; Murtaza G Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167424 [TBL] [Abstract][Full Text] [Related]
6. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Höchsmann C; Knaier R; Eymann J; Hintermann J; Infanger D; Schmidt-Trucksäss A Scand J Med Sci Sports; 2018 Jul; 28(7):1818-1827. PubMed ID: 29460319 [TBL] [Abstract][Full Text] [Related]
7. Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings. Straczkiewicz M; Keating NL; Thompson E; Matulonis UA; Campos SM; Wright AA; Onnela JP medRxiv; 2023 Mar; ():. PubMed ID: 37034681 [TBL] [Abstract][Full Text] [Related]
8. Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study. Haines-Delmont A; Chahal G; Bruen AJ; Wall A; Khan CT; Sadashiv R; Fearnley D JMIR Mhealth Uhealth; 2020 Jun; 8(6):e15901. PubMed ID: 32442152 [TBL] [Abstract][Full Text] [Related]
9. Development and Pilot Study of an iOS Smartphone Application for Perioperative Functional Capacity Assessment. Rubin DS; Dalton A; Tank A; Berkowitz M; Arnolds DE; Liao C; Gerlach RM Anesth Analg; 2020 Sep; 131(3):830-839. PubMed ID: 31567326 [TBL] [Abstract][Full Text] [Related]
10. Parkinson's disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study. Juutinen M; Wang C; Zhu J; Haladjian J; Ruokolainen J; Puustinen J; Vehkaoja A PLoS One; 2020; 15(7):e0236258. PubMed ID: 32701955 [TBL] [Abstract][Full Text] [Related]
11. Smartphone Pedometer Sensor Application for Evaluating Disease Activity and Predicting Comorbidities in Patients with Rheumatoid Arthritis: A Validation Study. Wagner SR; Gregersen RR; Henriksen L; Hauge EM; Keller KK Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502098 [TBL] [Abstract][Full Text] [Related]
12. Driving event recognition using machine learning and smartphones. Bin Jamal Mohd Lokman EH; Goh VT; Yap TTV; Ng H F1000Res; 2022; 11():57. PubMed ID: 37082303 [No Abstract] [Full Text] [Related]
13. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones. Deng ZA; Wang G; Hu Y; Cui Y Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187391 [TBL] [Abstract][Full Text] [Related]
14. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors. Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242 [TBL] [Abstract][Full Text] [Related]
15. Using Smart Socks to Detect Step-count at Slow Walking Speeds in Healthy Adults. Balmain BN; Tuttle N; Bailey J; Cheng K; Duryea M; Houlihan J; Wotherspoon J; Morris N Int J Sports Med; 2019 Feb; 40(2):133-138. PubMed ID: 30544268 [TBL] [Abstract][Full Text] [Related]
16. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data. Abujrida H; Agu E; Pahlavan K Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650 [TBL] [Abstract][Full Text] [Related]
17. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors. Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066 [TBL] [Abstract][Full Text] [Related]
18. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones. Xu S; Tang Q; Jin L; Pan Z Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109126 [TBL] [Abstract][Full Text] [Related]
19. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones. Kuang J; Niu X; Chen X Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29724003 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of three Android-based pedometer applications in laboratory and free-living settings. Leong JY; Wong JE J Sports Sci; 2017 Jan; 35(1):14-21. PubMed ID: 26950687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]