These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35632164)

  • 61. Tandem aberration correction optics (TACO) in wide-field structured illumination microscopy.
    Gong D; Scherer NF
    Biomed Opt Express; 2023 Dec; 14(12):6381-6396. PubMed ID: 38420301
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues.
    Gao Y; Liu L; Yin Y; Liao J; Yu J; Wu T; Ye S; Li H; Zheng W
    Opt Express; 2020 Nov; 28(23):34935-34947. PubMed ID: 33182951
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT.
    Kumar A; Kamali T; Platzer R; Unterhuber A; Drexler W; Leitgeb RA
    Biomed Opt Express; 2015 Apr; 6(4):1124-34. PubMed ID: 25908999
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm.
    Yan W; Huang Y; Wang L; Guo Y; Li J; Zhu Y; Yang Z; Qu J
    Microsc Microanal; 2022 Jan; ():1-7. PubMed ID: 35074025
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Adaptive optics-based wavefront-enhanced laser-induced fluorescence (WELIF) for improved analytical performance.
    Abdel-Harith M; Abdelazeem RM; Hamdy O; Abdel-Salam Z
    Anal Methods; 2023 Jan; 15(2):212-220. PubMed ID: 36524606
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope.
    Wilding D; Pozzi P; Soloviev O; Vdovin G; Verhaegen M
    Opt Express; 2016 Oct; 24(22):24896-24906. PubMed ID: 27828430
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry.
    Schwertner M; Booth MJ; Wilson T
    J Microsc; 2004 Sep; 215(Pt 3):271-80. PubMed ID: 15312192
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Confocal microscopic imaging of fast UV-laser photolysis of caged compounds.
    Korkotian E; Oron D; Silberberg Y; Segal M
    J Neurosci Methods; 2004 Feb; 133(1-2):153-9. PubMed ID: 14757356
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Artifacts resulting from imaging in scattering media: a theoretical prediction.
    Rohrbach A
    Opt Lett; 2009 Oct; 34(19):3041-3. PubMed ID: 19794809
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40.
    Wan DS; Rajadhyaksha M; Webb RH
    J Microsc; 2000 Mar; 197(Pt 3):274-84. PubMed ID: 10692131
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Aberration on excitation focal spot caused by oblique interface with refractive indices discontinuous and its correction with pure-phase compensation for laser scanning microscopy.
    Zhu Y; Zhang C; Zhao W; Wang J; Wang K; Bai J
    J Microsc; 2021 Jun; 282(3):239-249. PubMed ID: 33443815
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Imaging of custom-made single scatterers with the confocal laser scanning microscope.
    Lohner SA; Brenner T; Glöckler F; Hevisov D; Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2022 Oct; 39(10):1831-1838. PubMed ID: 36215555
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy.
    Binding J; Ben Arous J; Léger JF; Gigan S; Boccara C; Bourdieu L
    Opt Express; 2011 Mar; 19(6):4833-47. PubMed ID: 21445119
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.
    Albert O; Sherman L; Mourou G; Norris TB; Vdovin G
    Opt Lett; 2000 Jan; 25(1):52-4. PubMed ID: 18059779
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Adaptive optics microspectrometer for cross-correlation measurement of microfluidic flows.
    Collini M; Radaelli F; Sironi L; Ceffa NG; D'Alfonso L; Bouzin M; Chirico G
    J Biomed Opt; 2019 Feb; 24(2):1-15. PubMed ID: 30816029
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Single beam optical trapping integrated in a confocal microscope for biological applications.
    Visscher K; Brakenhoff GJ
    Cytometry; 1991; 12(6):486-91. PubMed ID: 1764973
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Intensity correction of fluorescent confocal laser scanning microscope images by mean-weight filtering.
    Lee SC; Bajcsy P
    J Microsc; 2006 Feb; 221(Pt 2):122-36. PubMed ID: 16499551
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue.
    Bancelin S; Mercier L; Murana E; Nägerl UV
    Neurophotonics; 2021 Jul; 8(3):035001. PubMed ID: 34136589
    [No Abstract]   [Full Text] [Related]  

  • 79. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.
    Xu Y; Liu YZ; Boppart SA; Carney PS
    Appl Opt; 2016 Mar; 55(8):2034-41. PubMed ID: 26974799
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experimental evaluation of optimized ablation patterns for laser refractive surgery.
    Dorronsoro C; Remon L; Merayo-Lloves J; Marcos S
    Opt Express; 2009 Aug; 17(17):15292-307. PubMed ID: 19688008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.