These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35632187)

  • 1. Modeling of High-Power Tonpilz Terfenol-D Transducer Using Complex Material Parameters.
    Wei Y; Yang X; Chen Y; Zhang Z; Zheng H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPICE Modeling of a High-Power Terfenol-D Transducer Considering Losses and Magnetic Flux Leakage.
    Yang M; Yang X; Wei Y; Zhang Z; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):812-822. PubMed ID: 34882552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Element Solutions for Magnetic Field Problems in Terfenol-D Transducers.
    Teng D; Li Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equivalent circuit for analyzing the transmitting characteristics of multimode Tonpilz transducer.
    Pyo S; Roh Y
    J Acoust Soc Am; 2022 Jun; 151(6):3594. PubMed ID: 35778183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Self-Sensing Composite: Piezoelectric and Magnetostrictive FEA Modeling and Experimental Characterization Using Wireless Detection Systems.
    Qhobosheane RG; Elenchezhian MRP; Das PP; Rahman M; Rabby MM; Vadlamudi V; Reifsnider K; Raihan R
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Characteristic Model of Giant Magnetostrictive Transducer with Double Terfenol-D Rods.
    Li Y; Dong X; Yu X
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic circuit optimization design and thermal analysis of the giant magnetostrictive transducer.
    Liu Q; He X
    Ultrasonics; 2023 Aug; 133():107031. PubMed ID: 37182316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.
    Zhang J; Li P; Wen Y; He W; Yang A; Lu C
    Rev Sci Instrum; 2014 Mar; 85(3):033904. PubMed ID: 24689597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the broadband tonpilz transducer with a single hole.
    Xiping H; Jing H
    Ultrasonics; 2009 May; 49(4-5):419-23. PubMed ID: 19081123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Design of a Rear-Mounted Underwater Projector Using Equivalent Circuits.
    Kim J; Roh Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Equivalent Circuit of High-Power Sandwich Piezoelectric Ultrasonic Transducer.
    Yu J; Xu L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3126-3136. PubMed ID: 36155428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rare earth ultrasonic transducer technique research.
    Liu W; Zhou L; Xia T; Yu H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e689-92. PubMed ID: 16797650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design.
    Bai Z; Zhang Z; Wang J; Sun X; Hu W
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An amplitude prediction model for a giant magnetostrictive ultrasonic transducer.
    Zhou H; Zhang J; Feng P; Yu D; Wu Z
    Ultrasonics; 2020 Dec; 108():106017. PubMed ID: 32690341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Wideband Tonpilz Transducer Comprising Non-Uniform Piezoceramic Stacks with Equivalent Circuits.
    Pyo S; Afzal MS; Lim Y; Lee S; Roh Y
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations on a mathematical model for optimum impedance compensation of a giant magnetostrictive ultrasonic transducer and its resonance characteristics.
    Zhou H; Zhang J; Feng P; Yu D; Wu Z
    Ultrasonics; 2021 Feb; 110():106286. PubMed ID: 33242698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic Energy Losses and Temperature Control System for Giant Magnetostrictive Transducer.
    Li Y; Dong X; Yu X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of length and position of drive-stacks on the transmitting-voltage-response of the broadband Tonpilz transducer.
    Ji B; Hong L; Lan Y
    J Acoust Soc Am; 2021 Dec; 150(6):4140. PubMed ID: 34972275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lumped parameter model of the longitudinal NiMnGa transducer based on piezomagnetic equations.
    Lan Y; Wang H; Lu W; Sun H
    J Acoust Soc Am; 2022 Sep; 152(3):1416. PubMed ID: 36182274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on tangentially polarized composite cylindrical piezoelectric transducer with high electro-mechanical coupling coefficient.
    Jia L; Zhang G; Zhang X; Yao Y; Lin S
    Ultrasonics; 2017 Feb; 74():204-210. PubMed ID: 27835809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.