BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35632192)

  • 21. An overview of biofeedback techniques in mechanical low back pain: effects on sensory integration of balance.
    Yaqoob MF; Noor R; Siddiqi FA; Rathore FA
    J Pak Med Assoc; 2023 Jan; 73(1):204-206. PubMed ID: 36842044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to Train Your Posture: Haptic Feedback Can be Used for Postural Adaptation of the Trunk During Upper-Limb Motor Training.
    Agarwal R; Hussain A; Campolo D; Skm V
    IEEE Trans Haptics; 2023; 16(2):182-193. PubMed ID: 37027641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensory supplementation system based on electrotactile tongue biofeedback of head position for balance control.
    Vuillerme N; Pinsault N; Chenu O; Demongeot J; Payan Y; Danilov Y
    Neurosci Lett; 2008 Feb; 431(3):206-10. PubMed ID: 18166270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multisensory postural control in adults: Variation in visual, haptic, and proprioceptive inputs.
    Cheung TCK; Schmuckler MA
    Hum Mov Sci; 2021 Oct; 79():102845. PubMed ID: 34358881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study.
    Lee BC; Thrasher TA; Fisher SP; Layne CS
    J Neuroeng Rehabil; 2015 Sep; 12():75. PubMed ID: 26329918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haptic feedback system for postural adaptation during robotic rehabilitation of upper limb.
    Agarwal R; Hussain A; Skm V; Campolo D
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of vibrotactile biofeedback training on trunk sway in Parkinson's disease patients.
    Nanhoe-Mahabier W; Allum JH; Pasman EP; Overeem S; Bloem BR
    Parkinsonism Relat Disord; 2012 Nov; 18(9):1017-21. PubMed ID: 22721975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects on balance skills and patient compliance of biofeedback training with inertial measurement units and exergaming in subacute stroke: a pilot randomized controlled trial.
    Lupo A; Cinnera AM; Pucello A; Iosa M; Coiro P; Personeni S; Gimigliano F; Iolascon G; Paolucci S; Morone G
    Funct Neurol; 2018; 33(3):131-136. PubMed ID: 30457965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing sensory acuity and balance function using near-sensory biofeedback-based perturbation intervention for individuals with traumatic brain injury.
    Veerubhotla A; Pilkar R; Ehrenberg N; Nolan KJ
    NeuroRehabilitation; 2021; 48(1):29-37. PubMed ID: 33386818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of visual versus auditory biofeedback training for voluntary postural sway.
    Hasegawa N; Takeda K; Mancini M; King LA; Horak FB; Asaka T
    PLoS One; 2020; 15(12):e0244583. PubMed ID: 33370408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly.
    Verhoeff LL; Horlings CG; Janssen LJ; Bridenbaugh SA; Allum JH
    Gait Posture; 2009 Jul; 30(1):76-81. PubMed ID: 19356934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Audio-biofeedback training for posture and balance in patients with Parkinson's disease.
    Mirelman A; Herman T; Nicolai S; Zijlstra A; Zijlstra W; Becker C; Chiari L; Hausdorff JM
    J Neuroeng Rehabil; 2011 Jun; 8():35. PubMed ID: 21693054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inter-individual variability in sensory weighting of a plantar pressure-based, tongue-placed tactile biofeedback for controlling posture.
    Vuillerme N; Chenu O; Pinsault N; Boisgontier M; Demongeot J; Payan Y
    Neurosci Lett; 2007 Jun; 421(2):173-7. PubMed ID: 17566646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ability of Low-Cost Force-Feedback Device to Influence Postural Stability.
    Baud-Bovy G; Tatti F; Borghese NA
    IEEE Trans Haptics; 2015; 8(2):130-9. PubMed ID: 25398181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia.
    Casellato C; Pedrocchi A; Zorzi G; Vernisse L; Ferrigno G; Nardocci N
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):474-80. PubMed ID: 23060345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tongue-based biofeedback for balance in stroke: results of an 8-week pilot study.
    Badke MB; Sherman J; Boyne P; Page S; Dunning K
    Arch Phys Med Rehabil; 2011 Sep; 92(9):1364-70. PubMed ID: 21878206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of virtual reality proprioceptive rehabilitation system for stroke patients.
    Cho S; Ku J; Cho YK; Kim IY; Kang YJ; Jang DP; Kim SI
    Comput Methods Programs Biomed; 2014; 113(1):258-65. PubMed ID: 24183070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Audio-biofeedback improves balance in patients with bilateral vestibular loss.
    Dozza M; Chiari L; Horak FB
    Arch Phys Med Rehabil; 2005 Jul; 86(7):1401-3. PubMed ID: 16003671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment and rehabilitation of central sensory impairments for balance in mTBI using auditory biofeedback: a randomized clinical trial.
    Fino PC; Peterka RJ; Hullar TE; Murchison C; Horak FB; Chesnutt JC; King LA
    BMC Neurol; 2017 Feb; 17(1):41. PubMed ID: 28231824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and Associated Sensory Responses in Motor Cortex.
    Deo DR; Rezaii P; Hochberg LR; M Okamura A; Shenoy KV; Henderson JM
    IEEE Trans Haptics; 2021; 14(4):762-775. PubMed ID: 33844633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.