These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35632211)

  • 1. Evaluating Automatic Body Orientation Detection for Indoor Location from Skeleton Tracking Data to Detect Socially Occupied Spaces Using the Kinect v2, Azure Kinect and Zed 2i.
    Sosa-León VAL; Schwering A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study.
    Albert JA; Owolabi V; Gebel A; Brahms CM; Granacher U; Arnrich B
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the Accuracy of the Azure Kinect and Kinect v2.
    Kurillo G; Hemingway E; Cheng ML; Cheng L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground reaction force and joint moment estimation during gait using an Azure Kinect-driven musculoskeletal modeling approach.
    Ripic Z; Kuenze C; Andersen MS; Theodorakos I; Signorile J; Eltoukhy M
    Gait Posture; 2022 Jun; 95():49-55. PubMed ID: 35428024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture.
    Guess TM; Bliss R; Hall JB; Kiselica AM
    Gait Posture; 2022 Jul; 96():130-136. PubMed ID: 35635988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the Processing Mode Influences Azure Kinect Body Tracking Results.
    Büker L; Quinten V; Hackbarth M; Hellmers S; Diekmann R; Hein A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markerless Knee Joint Position Measurement Using Depth Data during Stair Walking.
    Ogawa A; Mita A; Yorozu A; Takahashi M
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29165396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives.
    Clark RA; Mentiplay BF; Hough E; Pua YH
    Gait Posture; 2019 Feb; 68():193-200. PubMed ID: 30500731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Azure Kinect and Its Comparison to Kinect V1 and Kinect V2.
    Tölgyessy M; Dekan M; Chovanec Ľ; Hubinský P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Motion Integration with Multiple Depth Cameras Allowing Sensor Movement for Stable Skeleton Tracking.
    Furuhata K; Kutsuzawa K; Owaki D; Hayashibe M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1801-1804. PubMed ID: 36086142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait.
    Vilas-Boas MDC; Choupina HMP; Rocha AP; Fernandes JM; Cunha JPS
    J Biomech; 2019 Apr; 87():189-196. PubMed ID: 30914189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability and agreement of Azure Kinect and Kinect v2 depth sensors in the shoulder joint range of motion estimation.
    Özsoy U; Yıldırım Y; Karaşin S; Şekerci R; Süzen LB
    J Shoulder Elbow Surg; 2022 Oct; 31(10):2049-2056. PubMed ID: 35562032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoor 3D Reconstruction of Buildings via Azure Kinect RGB-D Camera.
    Delasse C; Lafkiri H; Hajji R; Rached I; Landes T
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of 3D Depth Motion Sensors for Capturing Upper Body Motions and Assessing the Quality of Wheelchair Transfers.
    Koontz AM; Neti A; Chung CS; Ayiluri N; Slavens BA; Davis CG; Wei L
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markerless 3D Skeleton Tracking Algorithm by Merging Multiple Inaccurate Skeleton Data from Multiple RGB-D Sensors.
    Lee SH; Lee DW; Jun K; Lee W; Kim MS
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinect v2 tracked Body Joint Smoothing for Kinematic Analysis in Musculoskeletal Disorders.
    Mangal NK; Tiwari AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5769-5772. PubMed ID: 33019285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsoft Azure Kinect Calibration for Three-Dimensional Dense Point Clouds and Reliable Skeletons.
    Romeo L; Marani R; Perri AG; D'Orazio T
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placement Recommendations for Single Kinect-Based Motion Capture System in Unilateral Dynamic Motion Analysis.
    Cai L; Liu D; Ma Y
    Healthcare (Basel); 2021 Aug; 9(8):. PubMed ID: 34442213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.