These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 35632212)

  • 1. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning.
    Pugalenthi K; Park H; Hussain S; Raghavan N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.
    Zhang C; He Y; Yuan L; Xiang S; Wang J
    Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries.
    Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B
    Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Fusion Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on Improved Genetic Algorithm BP and Adaptive Extended Kalman Filter.
    Cao L; Shao C; Zhang Z; Cao S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model.
    Cai Y; Li W; Zahid T; Zheng C; Zhang Q; Xu K
    Heliyon; 2023 Jul; 9(7):e17754. PubMed ID: 37456048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of NGO-BP Neural Network in Battery Life Prediction of Portable Medical Devices].
    An D; Shi L; Xu Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2024 May; 48(3):293-297. PubMed ID: 38863096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks.
    Wang YC; Shao NC; Chen GW; Hsu WS; Wu SC
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture.
    Li L; Wang P; Chao KH; Zhou Y; Xie Y
    PLoS One; 2016; 11(9):e0163004. PubMed ID: 27632176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy.
    Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de Macêdo EC
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Neural Network-Based Joint Prognostic Model for Data Fusion and Remaining Useful Life Prediction.
    Gao Y; Wen Y; Wu J
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):117-127. PubMed ID: 32167915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A remaining useful life estimation method based on long short-term memory and federated learning for electric vehicles in smart cities.
    Chen X; Chen Z; Zhang M; Wang Z; Liu M; Fu M; Wang P
    PeerJ Comput Sci; 2023; 9():e1652. PubMed ID: 38077580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Health State Estimation of On-Board Lithium-Ion Batteries Based on GMM-BID Model.
    Feng S; Wang A; Cai J; Zuo H; Zhang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer learning based generalized framework for state of health estimation of Li-ion cells.
    Sahoo S; Hariharan KS; Agarwal S; Swernath SB; Bharti R; Han S; Lee S
    Sci Rep; 2022 Aug; 12(1):13173. PubMed ID: 35915128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hybrid Data Preprocessing-Based Hierarchical Attention BiLSTM Network for Remaining Useful Life Prediction of Spacecraft Lithium-Ion Batteries.
    Luo T; Liu M; Shi P; Duan G; Cao X
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37725745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries.
    Pang X; Zhong S; Wang Y; Yang W; Zheng W; Sun G
    Chem Rec; 2022 Oct; 22(10):e202200131. PubMed ID: 35785467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.