These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35632354)

  • 41. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.
    Basu S; Lee MC; Wang YH
    Phys Chem Chem Phys; 2014 Aug; 16(31):16701-10. PubMed ID: 25000388
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clean graphene interfaces by selective dry transfer for large area silicon integration.
    Na SR; Rahimi S; Tao L; Chou H; Ameri SK; Akinwande D; Liechti KM
    Nanoscale; 2016 Apr; 8(14):7523-33. PubMed ID: 26902897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications.
    Sahoo G; Ghosh S; Polaki SR; Mathews T; Kamruddin M
    Nanotechnology; 2017 Oct; 28(41):415702. PubMed ID: 28745613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recyclable free-polymer transfer of nano-grain MoS
    Woo G; Kim HU; Yoo H; Kim T
    Nanotechnology; 2021 Jan; 32(4):045702. PubMed ID: 32998130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates.
    Fisichella G; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Tudisco C; Condorelli GG; Piluso N; Spartà N; Lo Verso S; Accardi C; Tringali C; Ravesi S; Giannazzo F
    Beilstein J Nanotechnol; 2013; 4():234-42. PubMed ID: 23616943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices.
    Lee D; Lee H; Ahn Y; Jeong Y; Lee DY; Lee Y
    Nanoscale; 2013 Sep; 5(17):7750-5. PubMed ID: 23842732
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-Temperature, Dry Transfer-Printing of a Patterned Graphene Monolayer.
    Cha S; Cha M; Lee S; Kang JH; Kim C
    Sci Rep; 2015 Dec; 5():17877. PubMed ID: 26648526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of the Transfer Method and Interfacial Adhesion on the Frictional and Wear Resistance Properties of a Graphene-Coated Polymer.
    Yallew TB; Narute P; Sharbidre RS; Byen JC; Park J; Hong SG
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monolayer Graphene Transfer onto Hydrophilic Substrates: A New Protocol Using Electrostatic Charging.
    Kafiah F; Laoui T; Abdelsalam E; Atieh MA; Khan Z; Alkasrawi M
    Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33233819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate.
    Lin WH; Chen TH; Chang JK; Taur JI; Lo YY; Lee WL; Chang CS; Su WB; Wu CI
    ACS Nano; 2014 Feb; 8(2):1784-91. PubMed ID: 24471977
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene.
    Castellanos-Gomez A; Wojtaszek M; Tombros N; Agraït N; van Wees BJ; Rubio-Bollinger G
    Small; 2011 Sep; 7(17):2491-7. PubMed ID: 21805626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors.
    Ren H; Zheng L; Wang G; Gao X; Tan Z; Shan J; Cui L; Li K; Jian M; Zhu L; Zhang Y; Peng H; Wei D; Liu Z
    ACS Nano; 2019 May; 13(5):5541-5548. PubMed ID: 31034773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cera alba-assisted ultraclean graphene transfer for high-performance PbI
    Xiao H; Liang T; Zhang X; Zhao P; Pi X; Xie Q; Xu M
    Nanotechnology; 2020 Sep; 31(36):365204. PubMed ID: 32464614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Versatile Polymer-Free Graphene Transfer Method and Applications.
    Zhang G; Güell AG; Kirkman PM; Lazenby RA; Miller TS; Unwin PR
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8008-16. PubMed ID: 26953499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene.
    Shi L; Liu Y; Yang F; Gao L; Sun J
    Nanotechnology; 2014 Apr; 25(14):145704. PubMed ID: 24633412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hot-Roll-Pressing Mediated Transfer of Chemical Vapor Deposition Graphene for Transparent and Flexible Touch Screen with Low Sheet-Resistance.
    Guo C; Kong X; Ji H
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4337-4342. PubMed ID: 29442784
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition.
    De Fazio D; Purdie DG; Ott AK; Braeuninger-Weimer P; Khodkov T; Goossens S; Taniguchi T; Watanabe K; Livreri P; Koppens FHL; Hofmann S; Goykhman I; Ferrari AC; Lombardo A
    ACS Nano; 2019 Aug; 13(8):8926-8935. PubMed ID: 31322332
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.
    Kahng YH; Lee S; Park W; Jo G; Choe M; Lee JH; Yu H; Lee T; Lee K
    Nanotechnology; 2012 Feb; 23(7):075702. PubMed ID: 22261350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.