BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35632377)

  • 1. Frontal Ring-Opening Metathesis Polymerization of Exo-Dicyclopentadiene for Low Catalyst Loadings.
    Robertson ID; Pruitt EL; Moore JS
    ACS Macro Lett; 2016 May; 5(5):593-596. PubMed ID: 35632377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoredox-Initiated Frontal Ring-Opening Metathesis Polymerization.
    Stawiasz KJ; Wendell CI; Suslick BA; Moore JS
    ACS Macro Lett; 2022 Jun; 11(6):780-784. PubMed ID: 35638608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-Initiated Ring-Opening Metathesis Polymerization of Dicyclopentadiene from the Vapor Phase.
    Njoroge I; Kempler PA; Deng X; Arnold ST; Jennings GK
    Langmuir; 2017 Dec; 33(49):13903-13912. PubMed ID: 29125298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene.
    Vidavsky Y; Navon Y; Ginzburg Y; Gottlieb M; Lemcoff NG
    Beilstein J Org Chem; 2015; 11():1469-74. PubMed ID: 26425203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkyl Phosphite Inhibitors for Frontal Ring-Opening Metathesis Polymerization Greatly Increase Pot Life.
    Robertson ID; Dean LM; Rudebusch GE; Sottos NR; White SR; Moore JS
    ACS Macro Lett; 2017 Jun; 6(6):609-612. PubMed ID: 35650845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal Ring-Opening Metathesis Copolymerization: Deviation of Front Velocity from Mixing Rules.
    Liu H; Wei H; Moore JS
    ACS Macro Lett; 2019 Jul; 8(7):846-851. PubMed ID: 35619510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoexcitation of Grubbs' Second-Generation Catalyst Initiates Frontal Ring-Opening Metathesis Polymerization.
    Stawiasz KJ; Paul JE; Schwarz KJ; Sottos NR; Moore JS
    ACS Macro Lett; 2020 Nov; 9(11):1563-1568. PubMed ID: 35617057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinked Polydicyclopentadiene Nanoparticles via Ring-Opening Metathesis Polymerization-Induced Self-Assembly Approach.
    Mei H; Zhao B; Wang H; Zheng S
    Macromol Rapid Commun; 2021 Jul; 42(14):e2100155. PubMed ID: 34057258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching Frontal Polymerization Mechanisms: FROMP and FRaP.
    Lessard JJ; Kaur P; Paul JE; Chang KM; Sottos NR; Moore JS
    ACS Macro Lett; 2022 Sep; 11(9):1097-1101. PubMed ID: 35998375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of Polydicyclopentadiene Enabled with N-Coordinated Boronic Ester Bonds.
    Hu J; Gao Y; Teng J; Li L; Zhang T; Zheng S
    Macromol Rapid Commun; 2024 May; ():e2400169. PubMed ID: 38722044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Foams via Frontal Polymerization.
    Alzate-Sanchez DM; Cencer MM; Rogalski M; Kersh ME; Sottos N; Moore JS
    Adv Mater; 2022 Feb; 34(8):e2105821. PubMed ID: 34762324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large, Rapid Swelling of High-
    Chriti D; Raptopoulos G; Brandenburg B; Paraskevopoulou P
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Data Science Tools to Reveal and Understand Subtle Relationships of Inhibitor Structure in Frontal Ring-Opening Metathesis Polymerization.
    McFadden TP; Cope RB; Muhlestein R; Layton DJ; Lessard JJ; Moore JS; Sigman MS
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38836636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands.
    Wappel J; Fischer RC; Cavallo L; Slugovc C; Poater A
    Beilstein J Org Chem; 2016; 12():154-65. PubMed ID: 26877818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive Manufacturing of Degradable Materials via Ring-Opening Metathesis Polymerization (ROMP).
    Leguizamon SC; Lyons K; Monk NT; Hochrein MT; Jones BH; Foster JC
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51301-51306. PubMed ID: 36318511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A General Autofluorescence Method to Characterize Polymerization Progress.
    López PA; Pham VHB; Blum SA
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202304618. PubMed ID: 37205838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling Reactivity Differences: Room-Temperature Ring-Opening Metathesis Polymerization (ROMP) versus Frontal ROMP.
    Lessard JJ; Mejia EB; Kim AJ; Zhang Z; Berkey MG; Medina-Barreto ZS; Ewoldt RH; Sottos NR; Moore JS
    J Am Chem Soc; 2024 Mar; 146(11):7216-7221. PubMed ID: 38441481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Self-Healing System for Polydicyclopentadiene Thermosets.
    Lee YB; Suslick BA; de Jong D; Wilson GO; Moore JS; Sottos NR; Braun PV
    Adv Mater; 2024 Mar; 36(11):e2309662. PubMed ID: 38087908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Interfacial Bonding on the Mechanical and Impact Properties Ring-Opening Metathesis Polymer (ROMP) Silica Composites.
    Tran NT; Patterson BA; Harris DE; Napadensky E; Lenhart JL; Knorr DB; Bain ED
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53342-53355. PubMed ID: 33190488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deterministic control over high-Z doping of polydicyclopentadiene-based aerogel coatings.
    Kim SH; Shin SJ; Lenhardt JM; Braun T; Sain JD; Valdez CA; Leif RN; Kucheyev SO; Wu KJ; Biener J; Satcher JH; Hamza AV
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8111-9. PubMed ID: 23895541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.