BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35632991)

  • 1. Coacervation between Two Positively Charged Poly(ionic liquid)s.
    Zhang C; Cai Y; Zhao Q
    Macromol Rapid Commun; 2022 Sep; 43(18):e2200191. PubMed ID: 35632991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels.
    Kim S; Huang J; Lee Y; Dutta S; Yoo HY; Jung YM; Jho Y; Zeng H; Hwang DS
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):E847-53. PubMed ID: 26831090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes.
    Rubinstein M; Liao Q; Panyukov S
    Macromolecules; 2018 Dec; 51(23):9572-9588. PubMed ID: 30853717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes.
    Aponte-Rivera C; Rubinstein M
    Macromolecules; 2021 Feb; 54(4):1783-1800. PubMed ID: 33981120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coacervation of supercharged proteins with polyelectrolytes.
    Obermeyer AC; Mills CE; Dong XH; Flores RJ; Olsen BD
    Soft Matter; 2016 Apr; 12(15):3570-81. PubMed ID: 26965053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Control Factors on Protein-Polyelectrolyte Complex Coacervation.
    Zhou J; Wan Y; Cohen Stuart MA; Wang M; Wang J
    Biomacromolecules; 2023 Dec; 24(12):5759-5768. PubMed ID: 37955264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic polypeptide tags for protein phase separation.
    Kapelner RA; Obermeyer AC
    Chem Sci; 2019 Mar; 10(9):2700-2707. PubMed ID: 30996987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coacervates: Recent developments as nanostructure delivery platforms for therapeutic biomolecules.
    Ban E; Kim A
    Int J Pharm; 2022 Aug; 624():122058. PubMed ID: 35905931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes.
    Tang JD; Caliari SR; Lampe KJ
    Biomacromolecules; 2018 Oct; 19(10):3925-3935. PubMed ID: 30185029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Strength Dependence of the Complex Coacervation between Lactoferrin and β-Lactoglobulin.
    Soussi Hachfi R; Hamon P; Rousseau F; Famelart MH; Bouhallab S
    Foods; 2023 Mar; 12(5):. PubMed ID: 36900563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion Pairing and the Structure of Gel Coacervates.
    Danielsen SPO; Panyukov S; Rubinstein M
    Macromolecules; 2020 Nov; 53(21):9420-9442. PubMed ID: 34366486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous Formulation of Concentrated Semiconductive Fluid Using Polyelectrolyte Coacervation.
    Le ML; Rawlings D; Danielsen SPO; Kennard RM; Chabinyc ML; Segalman RA
    ACS Macro Lett; 2021 Aug; 10(8):1008-1014. PubMed ID: 35549124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Ionic Group on the Complex Coacervate Core Micelle Structure.
    Heo TY; Kim I; Chen L; Lee E; Lee S; Choi SH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates.
    Es Sayed J; Caïto C; Arunachalam A; Amirsadeghi A; van Westerveld L; Maret D; Mohamed Yunus RA; Calicchia E; Dittberner O; Portale G; Parisi D; Kamperman M
    Macromolecules; 2023 Aug; 56(15):5891-5904. PubMed ID: 37576476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate).
    Huang S; Zhao M; Dawadi MB; Cai Y; Lapitsky Y; Modarelli DA; Zacharia NS
    J Colloid Interface Sci; 2018 May; 518():216-224. PubMed ID: 29459301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient formation of multi-phase droplets caused by the addition of a folded protein into complex coacervates with an oppositely charged surface relative to the protein.
    Sakakibara N; Ura T; Mikawa T; Sugai H; Shiraki K
    Soft Matter; 2023 Jun; 19(25):4642-4650. PubMed ID: 37291907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexation of a Conjugated Polyelectrolyte and Impact on Optoelectronic Properties.
    Danielsen SPO; Nguyen TQ; Fredrickson GH; Segalman RA
    ACS Macro Lett; 2019 Jan; 8(1):88-94. PubMed ID: 35619414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates: Insights from Molecular Simulations.
    Yu B; Liang H; Nealey PF; Tirrell MV; Rumyantsev AM; de Pablo JJ
    Macromolecules; 2023 Sep; 56(18):7256-7270. PubMed ID: 37781214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesive Coacervates Driven by Hydrogen-Bonding Interaction.
    Peng Q; Chen J; Zeng Z; Wang T; Xiang L; Peng X; Liu J; Zeng H
    Small; 2020 Oct; 16(43):e2004132. PubMed ID: 33006447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.