These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35633189)

  • 21. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glottal Airflow and Glottal Area Waveform Characteristics of Flow Phonation in Untrained Vocally Healthy Adults.
    Patel RR; Sundberg J; Gill B; Lã FMB
    J Voice; 2022 Jan; 36(1):140.e1-140.e21. PubMed ID: 32868146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a glottal area index that integrates glottal gap size and open quotient.
    Chen G; Kreiman J; Gerratt BR; Neubauer J; Shue YL; Alwan A
    J Acoust Soc Am; 2013 Mar; 133(3):1656-66. PubMed ID: 23464035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of RLN and SLN stimulation on glottal area.
    Bielamowicz S; Berke GS; Watson D; Gerratt BR; Kreiman J
    Otolaryngol Head Neck Surg; 1994 Apr; 110(4):370-80. PubMed ID: 8170680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Arytenoid Adduction Suture Position on Voice Production and Quality.
    Pillutla P; Zhang Z; Chhetri DK
    Laryngoscope; 2021 Apr; 131(4):846-852. PubMed ID: 32710654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonation Threshold Pressure Revisited: Effects of Intrinsic Laryngeal Muscle Activation.
    Azar SS; Chhetri DK
    Laryngoscope; 2022 Jul; 132(7):1427-1432. PubMed ID: 34784055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation.
    Doellinger M; Berry DA
    J Voice; 2006 Sep; 20(3):401-13. PubMed ID: 16300925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of phonatory posturing at phonation onset.
    Shiba TL; Chhetri DK
    Laryngoscope; 2016 Aug; 126(8):1837-43. PubMed ID: 26690882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vivo Quantification of the Intraglottal Pressure: Modal Phonation and Voice Onset.
    DeJonckere PH; Lebacq J
    J Voice; 2020 Jul; 34(4):645.e19-645.e39. PubMed ID: 30658875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glottal open quotient in singing: measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency.
    Henrich N; D'Alessandro C; Doval B; Castellengo M
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1417-30. PubMed ID: 15807029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model.
    Slavit DH; McCaffrey TV; Yanagi E
    Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Speed Videoendoscopic and Acoustic Characteristics of Inspiratory Phonation.
    Patel RR; Sandage MJ; Golzarri-Arroyo L
    J Speech Lang Hear Res; 2023 Apr; 66(4):1192-1207. PubMed ID: 36917802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation.
    Kreiman J; Shue YL; Chen G; Iseli M; Gerratt BR; Neubauer J; Alwan A
    J Acoust Soc Am; 2012 Oct; 132(4):2625-32. PubMed ID: 23039455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings.
    Herbst CT; Lohscheller J; Švec JG; Henrich N; Weissengruber G; Fitch WT
    J Exp Biol; 2014 Mar; 217(Pt 6):955-63. PubMed ID: 24622896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pediatric high speed digital imaging of vocal fold vibration: a normative pilot study of glottal closure and phase closure characteristics.
    Patel RR; Dixon A; Richmond A; Donohue KD
    Int J Pediatr Otorhinolaryngol; 2012 Jul; 76(7):954-9. PubMed ID: 22445799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing.
    Adachi S; Yu J
    J Acoust Soc Am; 2005 May; 117(5):3213-24. PubMed ID: 15957788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.