BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35633618)

  • 1. Resurgence of myeloproliferative neoplasm in patients in remission from blast transformation after treatment with hypomethylating agents.
    Chauvet P; Nibourel O; Berthon C; Goursaud L; Carpentier B; Lionne-Huyghe P; Wemeau M; Quesnel B
    Leuk Res; 2022 Jul; 118():106871. PubMed ID: 35633618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated Phase of Myeloproliferative Neoplasms.
    Shahin OA; Chifotides HT; Bose P; Masarova L; Verstovsek S
    Acta Haematol; 2021; 144(5):484-499. PubMed ID: 33882481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Clinical characteristics and prognostic factors of patients with Philadelphia-negative myeloproliferative neoplasm accelerated/blast phase].
    Yan X; Qin TJ; Li B; Qu SQ; Pan LJ; Li FH; Liu NN; Xiao ZJ; Xu ZF
    Zhonghua Xue Ye Xue Za Zhi; 2023 Apr; 44(4):276-283. PubMed ID: 37356995
    [No Abstract]   [Full Text] [Related]  

  • 4. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN.
    Pasca S; Chifotides HT; Verstovsek S; Bose P
    Int Rev Cell Mol Biol; 2022; 366():83-124. PubMed ID: 35153007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia.
    Benton CB; Boddu PC; DiNardo CD; Bose P; Wang F; Assi R; Pemmaraju N; Kc D; Pierce S; Patel K; Konopleva M; Ravandi F; Garcia-Manero G; Kadia TM; Cortes J; Kantarjian HM; Andreeff M; Verstovsek S
    Cancer; 2019 Jun; 125(11):1855-1866. PubMed ID: 30811597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK2 V617F-positive acute myeloid leukaemia (AML): a comparison between de novo AML and secondary AML transformed from an underlying myeloproliferative neoplasm. A study from the Bone Marrow Pathology Group.
    Aynardi J; Manur R; Hess PR; Chekol S; Morrissette JJD; Babushok D; Hexner E; Rogers HJ; Hsi ED; Margolskee E; Orazi A; Hasserjian R; Bagg A
    Br J Haematol; 2018 Jul; 182(1):78-85. PubMed ID: 29767839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of Philadelphia-negative myeloproliferative neoplasms in accelerated/blastic phase with azacytidine. Clinical results and identification of prognostic factors.
    Andriani A; Elli E; Trapè G; Villivà N; Fianchi L; Di Veroli A; Niscola P; Centra A; Anaclerico B; Montanaro G; Martini V; Aroldi A; Carmosino I; Voso MT; Breccia M; Montanaro M; Foà R; Latagliata R
    Hematol Oncol; 2019 Aug; 37(3):291-295. PubMed ID: 31050810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status.
    Kubesova B; Pavlova S; Malcikova J; Kabathova J; Radova L; Tom N; Tichy B; Plevova K; Kantorova B; Fiedorova K; Slavikova M; Bystry V; Kissova J; Gisslinger B; Gisslinger H; Penka M; Mayer J; Kralovics R; Pospisilova S; Doubek M
    Leukemia; 2018 Feb; 32(2):450-461. PubMed ID: 28744014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Venetoclax with azacitidine or decitabine in blast-phase myeloproliferative neoplasm: A multicenter series of 32 consecutive cases.
    Gangat N; Guglielmelli P; Szuber N; Begna KH; Patnaik MM; Litzow MR; Al-Kali A; Foran JM; Palmer JM; Alkhateeb H; Elliott MA; Hanson CA; Pardanani A; Mannelli F; Vannucchi AM; Tefferi A
    Am J Hematol; 2021 Jul; 96(7):781-789. PubMed ID: 33844862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated and blast phase myeloproliferative neoplasms.
    Saliba AN; Gangat N
    Best Pract Res Clin Haematol; 2022 Jun; 35(2):101379. PubMed ID: 36333070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy and safety of combination therapies vs monotherapy of hypomethylating agents in accelerated or blast phase of Philadelphia negative myeloproliferative neoplasms: a systematic review and meta-analysis.
    Chen J; Wang K; Xiao Z; Xu Z
    Ann Med; 2023 Dec; 55(1):348-360. PubMed ID: 36644935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between thromboembolic events and the JAK2 V617F mutation in myeloproliferative neoplasms.
    Takata Y; Seki R; Kanajii T; Nohara M; Koteda S; Kawaguchi K; Nomura K; Nakamura T; Morishige S; Oku E; Osaki K; Hashiguchi E; Mouri F; Yoshimoto K; Nagafuji K; Okamura T
    Kurume Med J; 2014; 60(3-4):89-97. PubMed ID: 24858412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase.
    Badar T; Kantarjian HM; Ravandi F; Jabbour E; Borthakur G; Cortes JE; Pemmaraju N; Pierce SR; Newberry KJ; Daver N; Verstovsek S
    Leuk Res; 2015 Sep; 39(9):950-6. PubMed ID: 26183878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blast phase myeloproliferative neoplasm: contemporary review and 2024 treatment algorithm.
    Tefferi A; Alkhateeb H; Gangat N
    Blood Cancer J; 2023 Jul; 13(1):108. PubMed ID: 37460550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of Clinical Characteristics of JAK2 V617F and BCR-ABL Double-Mutant Myeloproliferative Neoplasms].
    Yan J; Ding YW; Wang PY; Wu YP; Zhang HC; Liu LH
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2021 Oct; 29(5):1540-1547. PubMed ID: 34627437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells.
    Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW
    Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burkitt leukemia with precursor B-cell features that developed after ruxolitinib treatment in a patient with hydroxyurea-refractory JAK2
    Fukutsuka K; Iioka F; Maekawa F; Nakagawa M; Kishimori C; Hayashida M; Tagawa S; Akasaka T; Honjo G; Ohno H
    J Clin Exp Hematop; 2021 Jun; 61(2):114-119. PubMed ID: 33994432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM).
    Thepot S; Itzykson R; Seegers V; Raffoux E; Quesnel B; Chait Y; Sorin L; Dreyfus F; Cluzeau T; Delaunay J; Sanhes L; Eclache V; Dartigeas C; Turlure P; Harel S; Salanoubat C; Kiladjian JJ; Fenaux P; Adès L;
    Blood; 2010 Nov; 116(19):3735-42. PubMed ID: 20664061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The JAK2 V617F mutational status and allele burden may be related with the risk of venous thromboembolic events in patients with Philadelphia-negative myeloproliferative neoplasms.
    Borowczyk M; Wojtaszewska M; Lewandowski K; Gil L; Lewandowska M; Lehmann-Kopydłowska A; Kroll-Balcerzak R; Balcerzak A; Iwoła M; Michalak M; Komarnicki M
    Thromb Res; 2015 Feb; 135(2):272-80. PubMed ID: 25559461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myeloproliferative neoplasms: from JAK2 mutations discovery to JAK2 inhibitor therapies.
    Passamonti F; Maffioli M; Caramazza D; Cazzola M
    Oncotarget; 2011 Jun; 2(6):485-90. PubMed ID: 21646683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.