These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35634038)

  • 1. Film Effect Optimization by Deep Learning and Virtual Reality Technology in New Media Environment.
    Cui L; Zhang Z; Wang J; Meng Z
    Comput Intell Neurosci; 2022; 2022():8918073. PubMed ID: 35634038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning ultrasound rendering from cross-sectional model slices for simulated training.
    Zhang L; Portenier T; Goksel O
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):721-730. PubMed ID: 33834348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep unsupervised endoscopic image enhancement based on multi-image fusion.
    Huang D; Liu J; Zhou S; Tang W
    Comput Methods Programs Biomed; 2022 Jun; 221():106800. PubMed ID: 35533420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Texture Image Compression Algorithm Based on Self-Organizing Neural Network.
    Han J
    Comput Intell Neurosci; 2022; 2022():4865808. PubMed ID: 35440945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image Motion Deblurring Based on Deep Residual Shrinkage and Generative Adversarial Networks.
    Jiang W; Liu A
    Comput Intell Neurosci; 2022; 2022():5605846. PubMed ID: 35096042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of Intangible Cultural Heritage Visual Elements by Deep Learning and Its Application in Grassland Tourism of the Silk Road Culture.
    Bu X; Jiang M
    Comput Intell Neurosci; 2022; 2022():3242960. PubMed ID: 35769282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind Deblurring of Remote-Sensing Single Images Based on Feature Alignment.
    Zhu B; Lv Q; Yang Y; Sui X; Zhang Y; Tang Y; Tan Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying Lightweight Deep Learning-Based Virtual Vision Sensing Technology to Realize and Develop New Media Interactive Art Installation.
    Luo L
    Comput Intell Neurosci; 2022; 2022():9119316. PubMed ID: 35860644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a Modified Generative Adversarial Network in the Superresolution Reconstruction of Ancient Murals.
    Cao J; Zhang Z; Zhao A
    Comput Intell Neurosci; 2020; 2020():6670976. PubMed ID: 33456451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.
    Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C
    Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN).
    Choi K; Vania M; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2683-2686. PubMed ID: 31946448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Packaging Design Based on Deep Learning and Image Enhancement.
    Liu J
    Comput Intell Neurosci; 2022; 2022():9125234. PubMed ID: 35965777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Application of Traditional Chinese Auspicious Images in Environmental Art Design Based on VR Senses.
    He Z
    Comput Intell Neurosci; 2022; 2022():1189613. PubMed ID: 36164424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.