BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35634361)

  • 21. A bioinformatics workflow for variant peptide detection in shotgun proteomics.
    Li J; Su Z; Ma ZQ; Slebos RJ; Halvey P; Tabb DL; Liebler DC; Pao W; Zhang B
    Mol Cell Proteomics; 2011 May; 10(5):M110.006536. PubMed ID: 21389108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Streamlined Protocol for Deep Proteomic Profiling of FAC-sorted Cells and Its Application to Freshly Isolated Murine Immune Cells.
    Myers SA; Rhoads A; Cocco AR; Peckner R; Haber AL; Schweitzer LD; Krug K; Mani DR; Clauser KR; Rozenblatt-Rosen O; Hacohen N; Regev A; Carr SA
    Mol Cell Proteomics; 2019 May; 18(5):995-1009. PubMed ID: 30792265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome.
    Omasits U; Quebatte M; Stekhoven DJ; Fortes C; Roschitzki B; Robinson MD; Dehio C; Ahrens CH
    Genome Res; 2013 Nov; 23(11):1916-27. PubMed ID: 23878158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-specific RNA purification to study translatomes of mouse central nervous system.
    Bravo-Ferrer I; Khakh BS; Díaz-Castro B
    STAR Protoc; 2022 Jun; 3(2):101397. PubMed ID: 35620074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.
    Wu HX; Jia HM; Ma XW; Wang SB; Yao QS; Xu WT; Zhou YG; Gao ZS; Zhan RL
    J Proteomics; 2014 Jun; 105():19-30. PubMed ID: 24704857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis.
    Yang R; Klimentová J; Göckel-Krzikalla E; Ly R; Gmelin N; Hotz-Wagenblatt A; Řehulková H; Stulík J; Rösl F; Niebler M
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30918060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
    Vinogradova EV; Cravatt BF
    STAR Protoc; 2021 Jun; 2(2):100458. PubMed ID: 33899026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generating Sample-Specific Databases for Mass Spectrometry-Based Proteomic Analysis by Using RNA Sequencing.
    Luge T; Sauer S
    Methods Mol Biol; 2016; 1394():219-232. PubMed ID: 26700052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protocol for the Bottom-Up Proteomic Analysis of Mouse Spleen.
    Dowling P; Gargan S; Zweyer M; Henry M; Meleady P; Swandulla D; Ohlendieck K
    STAR Protoc; 2020 Dec; 1(3):100196. PubMed ID: 33377090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic and transcriptomic analyses of fecundity in the brown planthopper Nilaparvata lugens (Stål).
    Zhai Y; Zhang J; Sun Z; Dong X; He Y; Kang K; Liu Z; Zhang W
    J Proteome Res; 2013 Nov; 12(11):5199-212. PubMed ID: 24083549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating proteomic and transcriptomic analyses of loquat (Eriobotrya japonica Lindl.) in response to cold stress.
    Lou X; Wang H; Ni X; Gao Z; Iqbal S
    Gene; 2018 Nov; 677():57-65. PubMed ID: 30017739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AbSeq Protocol Using the Nano-Well Cartridge-Based Rhapsody Platform to Generate Protein and Transcript Expression Data on the Single-Cell Level.
    Erickson JR; Mair F; Bugos G; Martin J; Tyznik AJ; Nakamoto M; Mortimer S; Prlic M
    STAR Protoc; 2020 Sep; 1(2):. PubMed ID: 33000001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protocol to benchmark gene expression signature scoring techniques for single-cell RNA sequencing data in cancer.
    Noureen N; Wang X; Zheng S
    STAR Protoc; 2022 Dec; 3(4):101877. PubMed ID: 36595948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinformatics Workflow for Gonococcal Proteomics.
    El-Rami FE; Sikora AE
    Methods Mol Biol; 2019; 1997():185-205. PubMed ID: 31119625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Quantitative Proteome Map of the Human Body.
    Jiang L; Wang M; Lin S; Jian R; Li X; Chan J; Dong G; Fang H; Robinson AE; ; Snyder MP
    Cell; 2020 Oct; 183(1):269-283.e19. PubMed ID: 32916130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling.
    Gremel G; Wanders A; Cedernaes J; Fagerberg L; Hallström B; Edlund K; Sjöstedt E; Uhlén M; Pontén F
    J Gastroenterol; 2015 Jan; 50(1):46-57. PubMed ID: 24789573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of
    Pacheco NL; Heaven MR; Holt LM; Crossman DK; Boggio KJ; Shaffer SA; Flint DL; Olsen ML
    Mol Autism; 2017; 8():56. PubMed ID: 29090078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epitranscriptomic mapping of RNA modifications at single-nucleotide resolution using rhodamine sequencing (Rho-seq).
    Finet O; Yague-Sanz C; Hermand D
    STAR Protoc; 2022 Jun; 3(2):101369. PubMed ID: 35573476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual RNA-Sequencing of
    Pisu D; Huang L; Rin Lee BN; Grenier JK; Russell DG
    STAR Protoc; 2020 Dec; 1(3):100123. PubMed ID: 33377017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional profiling of mouse projection neurons with VECTORseq.
    Cheung V; Chung P; Feinberg EH
    STAR Protoc; 2022 Sep; 3(3):101625. PubMed ID: 36035788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.