These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35634551)

  • 1. Risk-benefit assessment of seaweed Allergenicity risk assessment of novel protein.
    Garciarena IN; Poulsen M; Lindholm Bøgh K
    EFSA J; 2022 May; 20(Suppl 1):e200414. PubMed ID: 35634551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insects in food and their relevance regarding allergenicity assessment.
    Delgado Calvo-Flores L; Garino C; Moreno FJ; Broll H
    EFSA J; 2022 Dec; 20(Suppl 2):e200909. PubMed ID: 36531273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel foods: allergenicity assessment of insect proteins.
    Liguori B; Sancho AI; Poulsen M; Lindholm Bøgh K
    EFSA J; 2022 Dec; 20(Suppl 2):e200910. PubMed ID: 36531270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk-benefit assessment of shifting from traditional meat-based diets to alternative dietary patterns.
    Mihalache OA; Dellafiora L; Dall'Asta C
    EFSA J; 2022 Dec; 20(Suppl 2):e200919. PubMed ID: 36531269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk assessment methodologies in the field of contaminants, food contact materials, technological ingredients and nutritional risks.
    ; Cătunescu GM; Troncoso AM; Jos A
    EFSA J; 2019 Sep; 17(Suppl 2):e170911. PubMed ID: 32626469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOGEST.
    Verhoeckx K; Bøgh KL; Dupont D; Egger L; Gadermaier G; Larré C; Mackie A; Menard O; Adel-Patient K; Picariello G; Portmann R; Smit J; Turner P; Untersmayr E; Epstein MM
    Food Chem Toxicol; 2019 Jul; 129():405-423. PubMed ID: 31063834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials in Food - Prioritisation & Assessment.
    ; Anastasi E; Riviere G; Teste B
    EFSA J; 2019 Sep; 17(Suppl 2):e170909. PubMed ID: 32626467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk assessment related to food additives and food processing-derived chemical contaminants exposure for the Portuguese population.
    ; Kukk M; Torres D
    EFSA J; 2020 Nov; 18(Suppl 1):e181110. PubMed ID: 33294049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment of iodine intake from the consumption of red seaweeds (Palmaria palmata and Chondrus crispus).
    Darias-Rosales J; Rubio C; Gutiérrez ÁJ; Paz S; Hardisson A
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45737-45741. PubMed ID: 32803579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutritional value of proteins from edible seaweed Palmaria palmata (dulse).
    Galland-Irmouli AV; Fleurence J; Lamghari R; Luçon M; Rouxel C; Barbaroux O; Bronowicki JP; Villaume C; Guéant JL
    J Nutr Biochem; 1999 Jun; 10(6):353-9. PubMed ID: 15539310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of tools and social science into food safety risk assessments.
    ; Valanou E; Oakenful R; Thomas C; Tsouli C; Adkin A
    EFSA J; 2020 Nov; 18(Suppl 1):e181104. PubMed ID: 33294043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Appraising diet-disease associations to be used in risk assessment, including an insight in nutritional epidemiology.
    Mendes V; Niforou A; Naska A
    EFSA J; 2022 May; 20(Suppl 1):e200411. PubMed ID: 35634559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying food proteins with allergenic potential: evolution of approaches to safety assessment and research to provide additional tools.
    Ladics GS; Selgrade MK
    Regul Toxicol Pharmacol; 2009 Aug; 54(3 Suppl):S2-6. PubMed ID: 19028539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Dutch food consumption data for risk assessment.
    ; Nelis K; van Rossum C
    EFSA J; 2018 Aug; 16(Suppl 1):e160810. PubMed ID: 32704313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk-Benefit Assessment of Foods.
    ; Assunção R; Pires SM; Nauta M
    EFSA J; 2019 Sep; 17(Suppl 2):e170917. PubMed ID: 32626475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Livestock Health and Food Chain Risk Assessment.
    ; Martínez JM; McCarthy C; Taylor RA
    EFSA J; 2020 Nov; 18(Suppl 1):e181111. PubMed ID: 33294050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kainic acid in the seaweed Palmaria palmata (dulse).
    Jørgensen K; Olesen PT
    Food Addit Contam Part B Surveill; 2018 Sep; 11(3):198-200. PubMed ID: 29656702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Livestock, food chain and public health risk assessment.
    ; Smeu I; Taylor RA
    EFSA J; 2019 Sep; 17(Suppl 2):e170912. PubMed ID: 32626470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inclusion of Palmaria palmata (red seaweed) in Atlantic salmon diets: effects on the quality, shelf-life parameters and sensory properties of fresh and cooked salmon fillets.
    Moroney NC; Wan AH; Soler-Vila A; FitzGerald RD; Johnson MP; Kerry JP
    J Sci Food Agric; 2015 Mar; 95(5):897-905. PubMed ID: 24852938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats.
    Fitzgerald C; Aluko RE; Hossain M; Rai DK; Hayes M
    J Agric Food Chem; 2014 Aug; 62(33):8352-6. PubMed ID: 25062358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.